Metamath Proof Explorer


Theorem evlsvval

Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evlsvval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsvval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsvval.b 𝐵 = ( Base ‘ 𝑃 )
evlsvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsvval.k 𝐾 = ( Base ‘ 𝑆 )
evlsvval.u 𝑈 = ( 𝑆s 𝑅 )
evlsvval.t 𝑇 = ( 𝑆s ( 𝐾m 𝐼 ) )
evlsvval.m 𝑀 = ( mulGrp ‘ 𝑇 )
evlsvval.w = ( .g𝑀 )
evlsvval.x · = ( .r𝑇 )
evlsvval.f 𝐹 = ( 𝑥𝑅 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) )
evlsvval.g 𝐺 = ( 𝑥𝐼 ↦ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) )
evlsvval.i ( 𝜑𝐼𝑉 )
evlsvval.s ( 𝜑𝑆 ∈ CRing )
evlsvval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsvval.a ( 𝜑𝐴𝐵 )
Assertion evlsvval ( 𝜑 → ( 𝑄𝐴 ) = ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsvval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsvval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsvval.b 𝐵 = ( Base ‘ 𝑃 )
4 evlsvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
5 evlsvval.k 𝐾 = ( Base ‘ 𝑆 )
6 evlsvval.u 𝑈 = ( 𝑆s 𝑅 )
7 evlsvval.t 𝑇 = ( 𝑆s ( 𝐾m 𝐼 ) )
8 evlsvval.m 𝑀 = ( mulGrp ‘ 𝑇 )
9 evlsvval.w = ( .g𝑀 )
10 evlsvval.x · = ( .r𝑇 )
11 evlsvval.f 𝐹 = ( 𝑥𝑅 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) )
12 evlsvval.g 𝐺 = ( 𝑥𝐼 ↦ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) )
13 evlsvval.i ( 𝜑𝐼𝑉 )
14 evlsvval.s ( 𝜑𝑆 ∈ CRing )
15 evlsvval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
16 evlsvval.a ( 𝜑𝐴𝐵 )
17 fveq1 ( 𝑝 = 𝐴 → ( 𝑝𝑏 ) = ( 𝐴𝑏 ) )
18 17 fveq2d ( 𝑝 = 𝐴 → ( 𝐹 ‘ ( 𝑝𝑏 ) ) = ( 𝐹 ‘ ( 𝐴𝑏 ) ) )
19 18 oveq1d ( 𝑝 = 𝐴 → ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) )
20 19 mpteq2dv ( 𝑝 = 𝐴 → ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) = ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) )
21 20 oveq2d ( 𝑝 = 𝐴 → ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) = ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )
22 eqid ( 𝑝𝐵 ↦ ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) ) = ( 𝑝𝐵 ↦ ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )
23 1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15 evlsval3 ( 𝜑𝑄 = ( 𝑝𝐵 ↦ ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) ) )
24 ovexd ( 𝜑 → ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) ∈ V )
25 21 23 16 24 fvmptd4 ( 𝜑 → ( 𝑄𝐴 ) = ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )