Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsvval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsvval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
evlsvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
5 |
|
evlsvval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
evlsvval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
7 |
|
evlsvval.t |
⊢ 𝑇 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
8 |
|
evlsvval.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑇 ) |
9 |
|
evlsvval.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
10 |
|
evlsvval.x |
⊢ · = ( .r ‘ 𝑇 ) |
11 |
|
evlsvval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) |
12 |
|
evlsvval.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) |
13 |
|
evlsvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
14 |
|
evlsvval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
15 |
|
evlsvval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
16 |
|
evlsvval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
17 |
|
fveq1 |
⊢ ( 𝑝 = 𝐴 → ( 𝑝 ‘ 𝑏 ) = ( 𝐴 ‘ 𝑏 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑝 = 𝐴 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑝 = 𝐴 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑝 = 𝐴 → ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
22 |
|
eqid |
⊢ ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15
|
evlsval3 |
⊢ ( 𝜑 → 𝑄 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
24 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V ) |
25 |
21 23 16 24
|
fvmptd4 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐴 ) = ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |