| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evlsvvval.q | 
							⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							evlsvvval.p | 
							⊢ 𝑃  =  ( 𝐼  mPoly  𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							evlsvvval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑃 )  | 
						
						
							| 4 | 
							
								
							 | 
							evlsvvval.u | 
							⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							evlsvvval.d | 
							⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  | 
						
						
							| 6 | 
							
								
							 | 
							evlsvvval.k | 
							⊢ 𝐾  =  ( Base ‘ 𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							evlsvvval.m | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑆 )  | 
						
						
							| 8 | 
							
								
							 | 
							evlsvvval.w | 
							⊢  ↑   =  ( .g ‘ 𝑀 )  | 
						
						
							| 9 | 
							
								
							 | 
							evlsvvval.x | 
							⊢  ·   =  ( .r ‘ 𝑆 )  | 
						
						
							| 10 | 
							
								
							 | 
							evlsvvval.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑉 )  | 
						
						
							| 11 | 
							
								
							 | 
							evlsvvval.s | 
							⊢ ( 𝜑  →  𝑆  ∈  CRing )  | 
						
						
							| 12 | 
							
								
							 | 
							evlsvvval.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							evlsvvval.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								
							 | 
							evlsvvval.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑙  =  𝐴  →  ( 𝑙 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝐴  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpteq2dv | 
							⊢ ( 𝑙  =  𝐴  →  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝐴  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) )  =  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝐴  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  =  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							mpteq2dv | 
							⊢ ( 𝑙  =  𝐴  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝐴  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  =  ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  =  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) )  =  ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) )  | 
						
						
							| 28 | 
							
								1 2 3 5 6 4 22 23 24 25 26 27 10 11 12 13
							 | 
							evlsvval | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐹 )  =  ( ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  →  { 𝑥 }  =  { ( 𝐹 ‘ 𝑏 ) } )  | 
						
						
							| 30 | 
							
								29
							 | 
							xpeq2d | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } )  =  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 )  | 
						
						
							| 32 | 
							
								2 31 3 5 13
							 | 
							mplelf | 
							⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) )  | 
						
						
							| 33 | 
							
								4
							 | 
							subrgbas | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑅  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 34 | 
							
								12 33
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑅  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							feq3d | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝐷 ⟶ 𝑅  ↔  𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ 𝑅 )  | 
						
						
							| 37 | 
							
								36
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑏 )  ∈  𝑅 )  | 
						
						
							| 38 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝐾  ↑m  𝐼 )  ∈  V  | 
						
						
							| 39 | 
							
								
							 | 
							snex | 
							⊢ { ( 𝐹 ‘ 𝑏 ) }  ∈  V  | 
						
						
							| 40 | 
							
								38 39
							 | 
							xpex | 
							⊢ ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  ∈  V  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  ∈  V )  | 
						
						
							| 42 | 
							
								26 30 37 41
							 | 
							fvmptd3 | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) )  | 
						
						
							| 43 | 
							
								5
							 | 
							psrbagf | 
							⊢ ( 𝑏  ∈  𝐷  →  𝑏 : 𝐼 ⟶ ℕ0 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏 : 𝐼 ⟶ ℕ0 )  | 
						
						
							| 45 | 
							
								44
							 | 
							ffnd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  Fn  𝐼 )  | 
						
						
							| 46 | 
							
								38
							 | 
							mptex | 
							⊢ ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) )  ∈  V  | 
						
						
							| 47 | 
							
								46 27
							 | 
							fnmpti | 
							⊢ ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) )  Fn  𝐼  | 
						
						
							| 48 | 
							
								47
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) )  Fn  𝐼 )  | 
						
						
							| 49 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 50 | 
							
								
							 | 
							inidm | 
							⊢ ( 𝐼  ∩  𝐼 )  =  𝐼  | 
						
						
							| 51 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑖 )  =  ( 𝑏 ‘ 𝑖 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑖  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑖 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							mpteq2dv | 
							⊢ ( 𝑥  =  𝑖  →  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) )  =  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  𝑖  ∈  𝐼 )  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  | 
						
						
							| 56 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  𝑆  ∈  CRing )  | 
						
						
							| 57 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝐾  ↑m  𝐼 )  ∈  V )  | 
						
						
							| 58 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  →  𝑎 : 𝐼 ⟶ 𝐾 )  | 
						
						
							| 59 | 
							
								58
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑎 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 60 | 
							
								59
							 | 
							ancoms | 
							⊢ ( ( 𝑖  ∈  𝐼  ∧  𝑎  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑎 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑎  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑎 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 62 | 
							
								61
							 | 
							fmpttd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) : ( 𝐾  ↑m  𝐼 ) ⟶ 𝐾 )  | 
						
						
							| 63 | 
							
								22 6 55 56 57 62
							 | 
							pwselbasr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) )  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 64 | 
							
								27 53 54 63
							 | 
							fvmptd3 | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ‘ 𝑖 )  =  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) )  | 
						
						
							| 65 | 
							
								45 48 49 49 50 51 64
							 | 
							offval | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 66 | 
							
								23 55
							 | 
							mgpbas | 
							⊢ ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( Base ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 67 | 
							
								11
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝑆  ∈  Ring )  | 
						
						
							| 68 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( 𝐾  ↑m  𝐼 )  ∈  V )  | 
						
						
							| 69 | 
							
								22
							 | 
							pwsring | 
							⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐾  ↑m  𝐼 )  ∈  V )  →  ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  ∈  Ring )  | 
						
						
							| 70 | 
							
								67 68 69
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  ∈  Ring )  | 
						
						
							| 71 | 
							
								23
							 | 
							ringmgp | 
							⊢ ( ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  ∈  Ring  →  ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  ∈  Mnd )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							syl | 
							⊢ ( 𝜑  →  ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  ∈  Mnd )  | 
						
						
							| 73 | 
							
								72
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  ∈  Mnd )  | 
						
						
							| 74 | 
							
								44
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑖 )  ∈  ℕ0 )  | 
						
						
							| 75 | 
							
								66 24 73 74 63
							 | 
							mulgnn0cld | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 76 | 
							
								22 6 55 56 57 75
							 | 
							pwselbas | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ) : ( 𝐾  ↑m  𝐼 ) ⟶ 𝐾 )  | 
						
						
							| 77 | 
							
								76
							 | 
							ffnd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) )  Fn  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 78 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  ∈  V  | 
						
						
							| 79 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							fnmpti | 
							⊢ ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  Fn  ( 𝐾  ↑m  𝐼 )  | 
						
						
							| 81 | 
							
								80
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  Fn  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) )  =  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑎  =  𝑝  →  ( 𝑎 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑖 ) )  | 
						
						
							| 84 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑝 ‘ 𝑖 )  ∈  V )  | 
						
						
							| 86 | 
							
								82 83 84 85
							 | 
							fvmptd3 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 )  =  ( 𝑝 ‘ 𝑖 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑝 ‘ 𝑖 ) ) )  | 
						
						
							| 88 | 
							
								67
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑆  ∈  Ring )  | 
						
						
							| 89 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝐾  ↑m  𝐼 )  ∈  V )  | 
						
						
							| 90 | 
							
								74
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑏 ‘ 𝑖 )  ∈  ℕ0 )  | 
						
						
							| 91 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) )  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 92 | 
							
								22 55 23 7 24 8 88 89 90 91 84
							 | 
							pwsexpg | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑚  =  𝑝  →  ( 𝑚 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑖 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							oveq2d | 
							⊢ ( 𝑚  =  𝑝  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑝 ‘ 𝑖 ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑝 ‘ 𝑖 ) )  ∈  V )  | 
						
						
							| 96 | 
							
								79 94 84 95
							 | 
							fvmptd3 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑝 ‘ 𝑖 ) ) )  | 
						
						
							| 97 | 
							
								87 92 96
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  ∧  𝑝  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 )  =  ( ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 ) )  | 
						
						
							| 98 | 
							
								77 81 97
							 | 
							eqfnfvd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 100 | 
							
								65 99
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) )  =  ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  | 
						
						
							| 103 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐾  ↑m  𝐼 )  ∈  V )  | 
						
						
							| 104 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑆  ∈  CRing )  | 
						
						
							| 105 | 
							
								7 6
							 | 
							mgpbas | 
							⊢ 𝐾  =  ( Base ‘ 𝑀 )  | 
						
						
							| 106 | 
							
								7
							 | 
							ringmgp | 
							⊢ ( 𝑆  ∈  Ring  →  𝑀  ∈  Mnd )  | 
						
						
							| 107 | 
							
								67 106
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  Mnd )  | 
						
						
							| 108 | 
							
								107
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 ) )  →  𝑀  ∈  Mnd )  | 
						
						
							| 109 | 
							
								74
							 | 
							adantrl | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 ) )  →  ( 𝑏 ‘ 𝑖 )  ∈  ℕ0 )  | 
						
						
							| 110 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  →  𝑚 : 𝐼 ⟶ 𝐾 )  | 
						
						
							| 111 | 
							
								110
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑚 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 ) )  →  ( 𝑚 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 113 | 
							
								105 8 108 109 112
							 | 
							mulgnn0cld | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  𝐼 ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  ∈  𝐾 )  | 
						
						
							| 114 | 
							
								49
							 | 
							mptexd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  ∈  V )  | 
						
						
							| 115 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  ∈  V )  | 
						
						
							| 116 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  Fun  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 118 | 
							
								5
							 | 
							psrbagfsupp | 
							⊢ ( 𝑏  ∈  𝐷  →  𝑏  finSupp  0 )  | 
						
						
							| 119 | 
							
								118
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  finSupp  0 )  | 
						
						
							| 120 | 
							
								
							 | 
							ssidd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  supp  0 )  ⊆  ( 𝑏  supp  0 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							0cnd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  0  ∈  ℂ )  | 
						
						
							| 122 | 
							
								44 120 49 121
							 | 
							suppssr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( 𝑏 ‘ 𝑖 )  =  0 )  | 
						
						
							| 123 | 
							
								122
							 | 
							oveq1d | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( 0  ↑  ( 𝑚 ‘ 𝑖 ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( 0  ↑  ( 𝑚 ‘ 𝑖 ) ) )  | 
						
						
							| 125 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) )  →  𝑖  ∈  𝐼 )  | 
						
						
							| 126 | 
							
								125 111
							 | 
							sylan2 | 
							⊢ ( ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( 𝑚 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 127 | 
							
								126
							 | 
							ancoms | 
							⊢ ( ( 𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑚 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 128 | 
							
								127
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑚 ‘ 𝑖 )  ∈  𝐾 )  | 
						
						
							| 129 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 )  | 
						
						
							| 130 | 
							
								7 129
							 | 
							ringidval | 
							⊢ ( 1r ‘ 𝑆 )  =  ( 0g ‘ 𝑀 )  | 
						
						
							| 131 | 
							
								105 130 8
							 | 
							mulg0 | 
							⊢ ( ( 𝑚 ‘ 𝑖 )  ∈  𝐾  →  ( 0  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 132 | 
							
								128 131
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 0  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 133 | 
							
								124 132
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							mpteq2dva | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 1r ‘ 𝑆 ) ) )  | 
						
						
							| 135 | 
							
								
							 | 
							fconstmpt | 
							⊢ ( ( 𝐾  ↑m  𝐼 )  ×  { ( 1r ‘ 𝑆 ) } )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 136 | 
							
								22 129
							 | 
							pws1 | 
							⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐾  ↑m  𝐼 )  ∈  V )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 1r ‘ 𝑆 ) } )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 137 | 
							
								67 68 136
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 1r ‘ 𝑆 ) } )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 1r ‘ 𝑆 ) } )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 139 | 
							
								135 138
							 | 
							eqtr3id | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 1r ‘ 𝑆 ) )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 140 | 
							
								134 139
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐼  ∖  ( 𝑏  supp  0 ) ) )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  =  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 141 | 
							
								140 49
							 | 
							suppss2 | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  supp  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  ⊆  ( 𝑏  supp  0 ) )  | 
						
						
							| 142 | 
							
								114 115 117 119 141
							 | 
							fsuppsssuppgd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  finSupp  ( 1r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 143 | 
							
								22 6 102 23 7 103 49 104 113 142
							 | 
							pwsgprod | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑖  ∈  𝐼  ↦  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 144 | 
							
								101 143
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 145 | 
							
								42 144
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) ) )  =  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 146 | 
							
								6
							 | 
							subrgss | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑅  ⊆  𝐾 )  | 
						
						
							| 147 | 
							
								33 146
							 | 
							eqsstrrd | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ( Base ‘ 𝑈 )  ⊆  𝐾 )  | 
						
						
							| 148 | 
							
								12 147
							 | 
							syl | 
							⊢ ( 𝜑  →  ( Base ‘ 𝑈 )  ⊆  𝐾 )  | 
						
						
							| 149 | 
							
								32 148
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ 𝐾 )  | 
						
						
							| 150 | 
							
								149
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑏 )  ∈  𝐾 )  | 
						
						
							| 151 | 
							
								
							 | 
							fconst6g | 
							⊢ ( ( 𝐹 ‘ 𝑏 )  ∈  𝐾  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾  ↑m  𝐼 ) ⟶ 𝐾 )  | 
						
						
							| 152 | 
							
								150 151
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾  ↑m  𝐼 ) ⟶ 𝐾 )  | 
						
						
							| 153 | 
							
								22 6 55 104 103 152
							 | 
							pwselbasr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 154 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 155 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑆  ∈  CRing )  | 
						
						
							| 156 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 157 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 158 | 
							
								5 6 7 8 154 155 156 157
							 | 
							evlsvvvallem | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑚  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 159 | 
							
								158
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) : ( 𝐾  ↑m  𝐼 ) ⟶ 𝐾 )  | 
						
						
							| 160 | 
							
								22 6 55 104 103 159
							 | 
							pwselbasr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 161 | 
							
								22 55 104 103 153 160 9 25
							 | 
							pwsmulrval | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) )  =  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  ∘f   ·  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 162 | 
							
								152
							 | 
							ffnd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  Fn  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 163 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  ∈  V  | 
						
						
							| 164 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  =  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 165 | 
							
								163 164
							 | 
							fnmpti | 
							⊢ ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  Fn  ( 𝐾  ↑m  𝐼 )  | 
						
						
							| 166 | 
							
								165
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) )  Fn  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 167 | 
							
								
							 | 
							inidm | 
							⊢ ( ( 𝐾  ↑m  𝐼 )  ∩  ( 𝐾  ↑m  𝐼 ) )  =  ( 𝐾  ↑m  𝐼 )  | 
						
						
							| 168 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐹 ‘ 𝑏 )  ∈  V  | 
						
						
							| 169 | 
							
								168
							 | 
							fvconst2 | 
							⊢ ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑏 ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑏 ) )  | 
						
						
							| 171 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑚  =  𝑙  →  ( 𝑚 ‘ 𝑖 )  =  ( 𝑙 ‘ 𝑖 ) )  | 
						
						
							| 172 | 
							
								171
							 | 
							oveq2d | 
							⊢ ( 𝑚  =  𝑙  →  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) )  =  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							mpteq2dv | 
							⊢ ( 𝑚  =  𝑙  →  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) )  | 
						
						
							| 174 | 
							
								173
							 | 
							oveq2d | 
							⊢ ( 𝑚  =  𝑙  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) )  =  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 175 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 176 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 177 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑆  ∈  CRing )  | 
						
						
							| 178 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 179 | 
							
								5 6 7 8 176 177 175 178
							 | 
							evlsvvvallem | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 180 | 
							
								164 174 175 179
							 | 
							fvmptd3 | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) ‘ 𝑙 )  =  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 181 | 
							
								162 166 103 103 167 170 180
							 | 
							offval | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { ( 𝐹 ‘ 𝑏 ) } )  ∘f   ·  ( 𝑚  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑚 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 182 | 
							
								145 161 181
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 183 | 
							
								182
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) )  | 
						
						
							| 184 | 
							
								183
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  Σg  ( 𝑏  ∘f  ( .g ‘ ( mulGrp ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) ) ( 𝑥  ∈  𝐼  ↦  ( 𝑎  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) )  =  ( ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  Σg  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) )  | 
						
						
							| 185 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  | 
						
						
							| 186 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( ℕ0  ↑m  𝐼 )  ∈  V )  | 
						
						
							| 187 | 
							
								5 186
							 | 
							rabexd | 
							⊢ ( 𝜑  →  𝐷  ∈  V )  | 
						
						
							| 188 | 
							
								67
							 | 
							ringcmnd | 
							⊢ ( 𝜑  →  𝑆  ∈  CMnd )  | 
						
						
							| 189 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  𝑆  ∈  Ring )  | 
						
						
							| 190 | 
							
								150
							 | 
							adantrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  𝐾 )  | 
						
						
							| 191 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  𝜑 )  | 
						
						
							| 192 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 193 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 194 | 
							
								191 192 193 179
							 | 
							syl21anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 195 | 
							
								6 9 189 190 194
							 | 
							ringcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ∧  𝑏  ∈  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  ∈  𝐾 )  | 
						
						
							| 196 | 
							
								187
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  ∈  V )  | 
						
						
							| 197 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) )  ∈  V )  | 
						
						
							| 198 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							a1i | 
							⊢ ( 𝜑  →  Fun  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) )  | 
						
						
							| 200 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 )  | 
						
						
							| 201 | 
							
								2 3 200 13
							 | 
							mplelsfi | 
							⊢ ( 𝜑  →  𝐹  finSupp  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 202 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝜑  →  ( 𝐹  supp  ( 0g ‘ 𝑈 ) )  ⊆  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  | 
						
						
							| 203 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑈 )  ∈  V )  | 
						
						
							| 204 | 
							
								149 202 187 203
							 | 
							suppssr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 205 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 )  | 
						
						
							| 206 | 
							
								4 205
							 | 
							subrg0 | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 207 | 
							
								12 206
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 208 | 
							
								207
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 209 | 
							
								204 208
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 211 | 
							
								210
							 | 
							oveq1d | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  =  ( ( 0g ‘ 𝑆 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 212 | 
							
								67
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  𝑆  ∈  Ring )  | 
						
						
							| 213 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 214 | 
							
								213 179
							 | 
							sylanl2 | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 215 | 
							
								6 9 205 212 214
							 | 
							ringlzd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 0g ‘ 𝑆 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 216 | 
							
								211 215
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  ∧  𝑙  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 217 | 
							
								216
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 0g ‘ 𝑆 ) ) )  | 
						
						
							| 218 | 
							
								
							 | 
							fconstmpt | 
							⊢ ( ( 𝐾  ↑m  𝐼 )  ×  { ( 0g ‘ 𝑆 ) } )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 219 | 
							
								188
							 | 
							cmnmndd | 
							⊢ ( 𝜑  →  𝑆  ∈  Mnd )  | 
						
						
							| 220 | 
							
								22 205
							 | 
							pws0g | 
							⊢ ( ( 𝑆  ∈  Mnd  ∧  ( 𝐾  ↑m  𝐼 )  ∈  V )  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 0g ‘ 𝑆 ) } )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 221 | 
							
								219 68 220
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐾  ↑m  𝐼 )  ×  { ( 0g ‘ 𝑆 ) } )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 222 | 
							
								218 221
							 | 
							eqtr3id | 
							⊢ ( 𝜑  →  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 223 | 
							
								222
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 224 | 
							
								217 223
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) )  =  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 225 | 
							
								224 187
							 | 
							suppss2 | 
							⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  supp  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  ⊆  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  | 
						
						
							| 226 | 
							
								196 197 199 201 225
							 | 
							fsuppsssuppgd | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) )  finSupp  ( 0g ‘ ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) ) )  | 
						
						
							| 227 | 
							
								22 6 185 68 187 188 195 226
							 | 
							pwsgsum | 
							⊢ ( 𝜑  →  ( ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) )  Σg  ( 𝑏  ∈  𝐷  ↦  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) )  | 
						
						
							| 228 | 
							
								28 184 227
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐹 )  =  ( 𝑙  ∈  ( 𝐾  ↑m  𝐼 )  ↦  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) )  | 
						
						
							| 229 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) )  ∈  V )  | 
						
						
							| 230 | 
							
								21 228 14 229
							 | 
							fvmptd4 | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑖 )  ↑  ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) )  |