Metamath Proof Explorer


Theorem evlsvvvallem

Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsvvvallem.k 𝐾 = ( Base ‘ 𝑆 )
evlsvvvallem.m 𝑀 = ( mulGrp ‘ 𝑆 )
evlsvvvallem.w = ( .g𝑀 )
evlsvvvallem.i ( 𝜑𝐼𝑉 )
evlsvvvallem.s ( 𝜑𝑆 ∈ CRing )
evlsvvvallem.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
evlsvvvallem.b ( 𝜑𝐵𝐷 )
Assertion evlsvvvallem ( 𝜑 → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 evlsvvvallem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 evlsvvvallem.k 𝐾 = ( Base ‘ 𝑆 )
3 evlsvvvallem.m 𝑀 = ( mulGrp ‘ 𝑆 )
4 evlsvvvallem.w = ( .g𝑀 )
5 evlsvvvallem.i ( 𝜑𝐼𝑉 )
6 evlsvvvallem.s ( 𝜑𝑆 ∈ CRing )
7 evlsvvvallem.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
8 evlsvvvallem.b ( 𝜑𝐵𝐷 )
9 3 2 mgpbas 𝐾 = ( Base ‘ 𝑀 )
10 eqid ( 1r𝑆 ) = ( 1r𝑆 )
11 3 10 ringidval ( 1r𝑆 ) = ( 0g𝑀 )
12 3 crngmgp ( 𝑆 ∈ CRing → 𝑀 ∈ CMnd )
13 6 12 syl ( 𝜑𝑀 ∈ CMnd )
14 6 crngringd ( 𝜑𝑆 ∈ Ring )
15 3 ringmgp ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd )
16 14 15 syl ( 𝜑𝑀 ∈ Mnd )
17 16 adantr ( ( 𝜑𝑣𝐼 ) → 𝑀 ∈ Mnd )
18 1 psrbagf ( 𝐵𝐷𝐵 : 𝐼 ⟶ ℕ0 )
19 8 18 syl ( 𝜑𝐵 : 𝐼 ⟶ ℕ0 )
20 19 ffvelcdmda ( ( 𝜑𝑣𝐼 ) → ( 𝐵𝑣 ) ∈ ℕ0 )
21 elmapi ( 𝐴 ∈ ( 𝐾m 𝐼 ) → 𝐴 : 𝐼𝐾 )
22 7 21 syl ( 𝜑𝐴 : 𝐼𝐾 )
23 22 ffvelcdmda ( ( 𝜑𝑣𝐼 ) → ( 𝐴𝑣 ) ∈ 𝐾 )
24 9 4 17 20 23 mulgnn0cld ( ( 𝜑𝑣𝐼 ) → ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ∈ 𝐾 )
25 24 fmpttd ( 𝜑 → ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) : 𝐼𝐾 )
26 5 mptexd ( 𝜑 → ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ∈ V )
27 fvexd ( 𝜑 → ( 1r𝑆 ) ∈ V )
28 25 ffund ( 𝜑 → Fun ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) )
29 1 psrbagfsupp ( 𝐵𝐷𝐵 finSupp 0 )
30 8 29 syl ( 𝜑𝐵 finSupp 0 )
31 ssidd ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) )
32 0zd ( 𝜑 → 0 ∈ ℤ )
33 19 31 5 32 suppssr ( ( 𝜑𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐵𝑣 ) = 0 )
34 33 oveq1d ( ( 𝜑𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) = ( 0 ( 𝐴𝑣 ) ) )
35 eldifi ( 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) → 𝑣𝐼 )
36 35 23 sylan2 ( ( 𝜑𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐴𝑣 ) ∈ 𝐾 )
37 9 11 4 mulg0 ( ( 𝐴𝑣 ) ∈ 𝐾 → ( 0 ( 𝐴𝑣 ) ) = ( 1r𝑆 ) )
38 36 37 syl ( ( 𝜑𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 0 ( 𝐴𝑣 ) ) = ( 1r𝑆 ) )
39 34 38 eqtrd ( ( 𝜑𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) = ( 1r𝑆 ) )
40 39 5 suppss2 ( 𝜑 → ( ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) supp ( 1r𝑆 ) ) ⊆ ( 𝐵 supp 0 ) )
41 26 27 28 30 40 fsuppsssuppgd ( 𝜑 → ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) finSupp ( 1r𝑆 ) )
42 9 11 13 5 25 41 gsumcl ( 𝜑 → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )