| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evlsvvvallem.d | 
							⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  | 
						
						
							| 2 | 
							
								
							 | 
							evlsvvvallem.k | 
							⊢ 𝐾  =  ( Base ‘ 𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							evlsvvvallem.m | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							evlsvvvallem.w | 
							⊢  ↑   =  ( .g ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							evlsvvvallem.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							evlsvvvallem.s | 
							⊢ ( 𝜑  →  𝑆  ∈  CRing )  | 
						
						
							| 7 | 
							
								
							 | 
							evlsvvvallem.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							evlsvvvallem.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝐷 )  | 
						
						
							| 9 | 
							
								3 2
							 | 
							mgpbas | 
							⊢ 𝐾  =  ( Base ‘ 𝑀 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							ringidval | 
							⊢ ( 1r ‘ 𝑆 )  =  ( 0g ‘ 𝑀 )  | 
						
						
							| 12 | 
							
								3
							 | 
							crngmgp | 
							⊢ ( 𝑆  ∈  CRing  →  𝑀  ∈  CMnd )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  CMnd )  | 
						
						
							| 14 | 
							
								6
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝑆  ∈  Ring )  | 
						
						
							| 15 | 
							
								3
							 | 
							ringmgp | 
							⊢ ( 𝑆  ∈  Ring  →  𝑀  ∈  Mnd )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  Mnd )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐼 )  →  𝑀  ∈  Mnd )  | 
						
						
							| 18 | 
							
								1
							 | 
							psrbagf | 
							⊢ ( 𝐵  ∈  𝐷  →  𝐵 : 𝐼 ⟶ ℕ0 )  | 
						
						
							| 19 | 
							
								8 18
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐵 : 𝐼 ⟶ ℕ0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐼 )  →  ( 𝐵 ‘ 𝑣 )  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝐴  ∈  ( 𝐾  ↑m  𝐼 )  →  𝐴 : 𝐼 ⟶ 𝐾 )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐴 : 𝐼 ⟶ 𝐾 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐼 )  →  ( 𝐴 ‘ 𝑣 )  ∈  𝐾 )  | 
						
						
							| 24 | 
							
								9 4 17 20 23
							 | 
							mulgnn0cld | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐼 )  →  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) )  ∈  𝐾 )  | 
						
						
							| 25 | 
							
								24
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) : 𝐼 ⟶ 𝐾 )  | 
						
						
							| 26 | 
							
								5
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) )  ∈  V )  | 
						
						
							| 27 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  V )  | 
						
						
							| 28 | 
							
								25
							 | 
							ffund | 
							⊢ ( 𝜑  →  Fun  ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) )  | 
						
						
							| 29 | 
							
								1
							 | 
							psrbagfsupp | 
							⊢ ( 𝐵  ∈  𝐷  →  𝐵  finSupp  0 )  | 
						
						
							| 30 | 
							
								8 29
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐵  finSupp  0 )  | 
						
						
							| 31 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝜑  →  ( 𝐵  supp  0 )  ⊆  ( 𝐵  supp  0 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 33 | 
							
								19 31 5 32
							 | 
							suppssr | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) ) )  →  ( 𝐵 ‘ 𝑣 )  =  0 )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) ) )  →  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) )  =  ( 0  ↑  ( 𝐴 ‘ 𝑣 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) )  →  𝑣  ∈  𝐼 )  | 
						
						
							| 36 | 
							
								35 23
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) ) )  →  ( 𝐴 ‘ 𝑣 )  ∈  𝐾 )  | 
						
						
							| 37 | 
							
								9 11 4
							 | 
							mulg0 | 
							⊢ ( ( 𝐴 ‘ 𝑣 )  ∈  𝐾  →  ( 0  ↑  ( 𝐴 ‘ 𝑣 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) ) )  →  ( 0  ↑  ( 𝐴 ‘ 𝑣 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝐼  ∖  ( 𝐵  supp  0 ) ) )  →  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) )  =  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 40 | 
							
								39 5
							 | 
							suppss2 | 
							⊢ ( 𝜑  →  ( ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) )  supp  ( 1r ‘ 𝑆 ) )  ⊆  ( 𝐵  supp  0 ) )  | 
						
						
							| 41 | 
							
								26 27 28 30 40
							 | 
							fsuppsssuppgd | 
							⊢ ( 𝜑  →  ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) )  finSupp  ( 1r ‘ 𝑆 ) )  | 
						
						
							| 42 | 
							
								9 11 13 5 25 41
							 | 
							gsumcl | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝐵 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) )  ∈  𝐾 )  |