Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvvvallem2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
evlsvvvallem2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsvvvallem2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsvvvallem2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
evlsvvvallem2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
evlsvvvallem2.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
7 |
|
evlsvvvallem2.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
8 |
|
evlsvvvallem2.x |
⊢ · = ( .r ‘ 𝑆 ) |
9 |
|
evlsvvvallem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
evlsvvvallem2.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
11 |
|
evlsvvvallem2.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
12 |
|
evlsvvvallem2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
13 |
|
evlsvvvallem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
14 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
15 |
1 14
|
rabex2 |
⊢ 𝐷 ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V ) |
18 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
19 |
|
funmpt |
⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
22 |
3
|
ovexi |
⊢ 𝑈 ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
24 |
2 4 21 12 23
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑈 ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
26 |
2 25 4 1 12
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
27 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
28 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) |
29 |
26 27 12 28
|
suppssrg |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑈 ) ) |
30 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
31 |
3 30
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
32 |
11 31
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
33 |
32
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
35 |
29 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
36 |
35
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
37 |
10
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝑆 ∈ Ring ) |
39 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐷 ) |
40 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
41 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
42 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
44 |
1 5 6 7 40 41 42 43
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
45 |
39 44
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
46 |
5 8 30 38 45
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
47 |
36 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
48 |
15
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
49 |
47 48
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
50 |
17 18 20 24 49
|
fsuppsssuppgd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |