Metamath Proof Explorer


Theorem evlsvvvallem2

Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsvvvallem2.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsvvvallem2.u 𝑈 = ( 𝑆s 𝑅 )
evlsvvvallem2.b 𝐵 = ( Base ‘ 𝑃 )
evlsvvvallem2.k 𝐾 = ( Base ‘ 𝑆 )
evlsvvvallem2.m 𝑀 = ( mulGrp ‘ 𝑆 )
evlsvvvallem2.w = ( .g𝑀 )
evlsvvvallem2.x · = ( .r𝑆 )
evlsvvvallem2.i ( 𝜑𝐼𝑉 )
evlsvvvallem2.s ( 𝜑𝑆 ∈ CRing )
evlsvvvallem2.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsvvvallem2.f ( 𝜑𝐹𝐵 )
evlsvvvallem2.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
Assertion evlsvvvallem2 ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) finSupp ( 0g𝑆 ) )

Proof

Step Hyp Ref Expression
1 evlsvvvallem2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 evlsvvvallem2.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsvvvallem2.u 𝑈 = ( 𝑆s 𝑅 )
4 evlsvvvallem2.b 𝐵 = ( Base ‘ 𝑃 )
5 evlsvvvallem2.k 𝐾 = ( Base ‘ 𝑆 )
6 evlsvvvallem2.m 𝑀 = ( mulGrp ‘ 𝑆 )
7 evlsvvvallem2.w = ( .g𝑀 )
8 evlsvvvallem2.x · = ( .r𝑆 )
9 evlsvvvallem2.i ( 𝜑𝐼𝑉 )
10 evlsvvvallem2.s ( 𝜑𝑆 ∈ CRing )
11 evlsvvvallem2.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
12 evlsvvvallem2.f ( 𝜑𝐹𝐵 )
13 evlsvvvallem2.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
14 ovex ( ℕ0m 𝐼 ) ∈ V
15 1 14 rabex2 𝐷 ∈ V
16 15 mptex ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ∈ V
17 16 a1i ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ∈ V )
18 fvexd ( 𝜑 → ( 0g𝑆 ) ∈ V )
19 funmpt Fun ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
20 19 a1i ( 𝜑 → Fun ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) )
21 eqid ( 0g𝑈 ) = ( 0g𝑈 )
22 3 ovexi 𝑈 ∈ V
23 22 a1i ( 𝜑𝑈 ∈ V )
24 2 4 21 12 23 mplelsfi ( 𝜑𝐹 finSupp ( 0g𝑈 ) )
25 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
26 2 25 4 1 12 mplelf ( 𝜑𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) )
27 ssidd ( 𝜑 → ( 𝐹 supp ( 0g𝑈 ) ) ⊆ ( 𝐹 supp ( 0g𝑈 ) ) )
28 fvexd ( 𝜑 → ( 0g𝑈 ) ∈ V )
29 26 27 12 28 suppssrg ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( 𝐹𝑏 ) = ( 0g𝑈 ) )
30 eqid ( 0g𝑆 ) = ( 0g𝑆 )
31 3 30 subrg0 ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
32 11 31 syl ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑈 ) )
33 32 eqcomd ( 𝜑 → ( 0g𝑈 ) = ( 0g𝑆 ) )
34 33 adantr ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( 0g𝑈 ) = ( 0g𝑆 ) )
35 29 34 eqtrd ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( 𝐹𝑏 ) = ( 0g𝑆 ) )
36 35 oveq1d ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( ( 0g𝑆 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
37 10 crngringd ( 𝜑𝑆 ∈ Ring )
38 37 adantr ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → 𝑆 ∈ Ring )
39 eldifi ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) → 𝑏𝐷 )
40 9 adantr ( ( 𝜑𝑏𝐷 ) → 𝐼𝑉 )
41 10 adantr ( ( 𝜑𝑏𝐷 ) → 𝑆 ∈ CRing )
42 13 adantr ( ( 𝜑𝑏𝐷 ) → 𝐴 ∈ ( 𝐾m 𝐼 ) )
43 simpr ( ( 𝜑𝑏𝐷 ) → 𝑏𝐷 )
44 1 5 6 7 40 41 42 43 evlsvvvallem ( ( 𝜑𝑏𝐷 ) → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )
45 39 44 sylan2 ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )
46 5 8 30 38 45 ringlzd ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( ( 0g𝑆 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 0g𝑆 ) )
47 36 46 eqtrd ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g𝑈 ) ) ) ) → ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 0g𝑆 ) )
48 15 a1i ( 𝜑𝐷 ∈ V )
49 47 48 suppss2 ( 𝜑 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) supp ( 0g𝑆 ) ) ⊆ ( 𝐹 supp ( 0g𝑈 ) ) )
50 17 18 20 24 49 fsuppsssuppgd ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) finSupp ( 0g𝑆 ) )