| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evlsvvvallem2.d | 
							⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  | 
						
						
							| 2 | 
							
								
							 | 
							evlsvvvallem2.p | 
							⊢ 𝑃  =  ( 𝐼  mPoly  𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							evlsvvvallem2.u | 
							⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							evlsvvvallem2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							evlsvvvallem2.k | 
							⊢ 𝐾  =  ( Base ‘ 𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							evlsvvvallem2.m | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							evlsvvvallem2.w | 
							⊢  ↑   =  ( .g ‘ 𝑀 )  | 
						
						
							| 8 | 
							
								
							 | 
							evlsvvvallem2.x | 
							⊢  ·   =  ( .r ‘ 𝑆 )  | 
						
						
							| 9 | 
							
								
							 | 
							evlsvvvallem2.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑉 )  | 
						
						
							| 10 | 
							
								
							 | 
							evlsvvvallem2.s | 
							⊢ ( 𝜑  →  𝑆  ∈  CRing )  | 
						
						
							| 11 | 
							
								
							 | 
							evlsvvvallem2.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							evlsvvvallem2.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							evlsvvvallem2.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ovex | 
							⊢ ( ℕ0  ↑m  𝐼 )  ∈  V  | 
						
						
							| 15 | 
							
								1 14
							 | 
							rabex2 | 
							⊢ 𝐷  ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							mptex | 
							⊢ ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  ∈  V  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  ∈  V )  | 
						
						
							| 18 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  V )  | 
						
						
							| 19 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( 𝜑  →  Fun  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 )  | 
						
						
							| 22 | 
							
								2 4 21 12
							 | 
							mplelsfi | 
							⊢ ( 𝜑  →  𝐹  finSupp  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 )  | 
						
						
							| 24 | 
							
								2 23 4 1 12
							 | 
							mplelf | 
							⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝜑  →  ( 𝐹  supp  ( 0g ‘ 𝑈 ) )  ⊆  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑈 )  ∈  V )  | 
						
						
							| 27 | 
							
								24 25 12 26
							 | 
							suppssrg | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 )  | 
						
						
							| 29 | 
							
								3 28
							 | 
							subrg0 | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 30 | 
							
								11 29
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 33 | 
							
								27 32
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝐹 ‘ 𝑏 )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) )  =  ( ( 0g ‘ 𝑆 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  | 
						
						
							| 35 | 
							
								10
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝑆  ∈  Ring )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  𝑆  ∈  Ring )  | 
						
						
							| 37 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 38 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 39 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑆  ∈  CRing )  | 
						
						
							| 40 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐴  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  ∈  𝐷 )  | 
						
						
							| 42 | 
							
								1 5 6 7 38 39 40 41
							 | 
							evlsvvvallem | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 43 | 
							
								37 42
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) )  ∈  𝐾 )  | 
						
						
							| 44 | 
							
								5 8 28 36 43
							 | 
							ringlzd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( ( 0g ‘ 𝑆 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 45 | 
							
								34 44
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) ) )  →  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) )  =  ( 0g ‘ 𝑆 ) )  | 
						
						
							| 46 | 
							
								15
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐷  ∈  V )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							suppss2 | 
							⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( 𝐹  supp  ( 0g ‘ 𝑈 ) ) )  | 
						
						
							| 48 | 
							
								17 18 20 22 47
							 | 
							fsuppsssuppgd | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ 𝑏 )  ·  ( 𝑀  Σg  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑣 )  ↑  ( 𝐴 ‘ 𝑣 ) ) ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) )  |