Step |
Hyp |
Ref |
Expression |
1 |
|
evlval.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
2 |
|
evlval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 evalSub 𝑟 ) = ( 𝐼 evalSub 𝑅 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
6 |
5
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
7 |
3 6
|
fveq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
8 |
|
df-evl |
⊢ eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) ) |
9 |
|
fvex |
⊢ ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ∈ V |
10 |
7 8 9
|
ovmpoa |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
11 |
8
|
mpondm0 |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ∅ ) |
12 |
|
0fv |
⊢ ( ∅ ‘ 𝐵 ) = ∅ |
13 |
11 12
|
eqtr4di |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ∅ ‘ 𝐵 ) ) |
14 |
|
reldmevls |
⊢ Rel dom evalSub |
15 |
14
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 evalSub 𝑅 ) = ∅ ) |
16 |
15
|
fveq1d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) = ( ∅ ‘ 𝐵 ) ) |
17 |
13 16
|
eqtr4d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) ) |
18 |
10 17
|
pm2.61i |
⊢ ( 𝐼 eval 𝑅 ) = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
19 |
1 18
|
eqtri |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |