Step |
Hyp |
Ref |
Expression |
1 |
|
evlvvval.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
2 |
|
evlvvval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
evlvvval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
evlvvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
5 |
|
evlvvval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
6 |
|
evlvvval.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
7 |
|
evlvvval.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
8 |
|
evlvvval.x |
⊢ · = ( .r ‘ 𝑅 ) |
9 |
|
evlvvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
evlvvval.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
11 |
|
evlvvval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
12 |
|
evlvvval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
13 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) = ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
15 |
|
eqid |
⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
17 |
10
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
18
|
subrgid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
21 |
18
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
22 |
10 21
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( 𝐼 mPoly 𝑅 ) ) |
24 |
23 2
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = 𝑃 ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ 𝑃 ) ) |
26 |
25 3
|
eqtr4di |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = 𝐵 ) |
27 |
11 26
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
28 |
13 1 14 15 16 9 10 20 27
|
evlsevl |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) = ( 𝑄 ‘ 𝐹 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ) |
30 |
13 14 16 15 4 5 6 7 8 9 10 20 27 12
|
evlsvvval |
⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
31 |
29 30
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |