Step |
Hyp |
Ref |
Expression |
1 |
|
evlvvvallem.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
evlvvvallem.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
evlvvvallem.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
evlvvvallem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
evlvvvallem.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
6 |
|
evlvvvallem.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
7 |
|
evlvvvallem.x |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
evlvvvallem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
9 |
|
evlvvvallem.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
evlvvvallem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
11 |
|
evlvvvallem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
12 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) |
13 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐾 ) = ( 𝑅 ↾s 𝐾 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) |
15 |
9
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
16 |
4
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑅 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ 𝑅 ) ) |
18 |
4
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐾 ) = 𝑅 ) |
19 |
9 18
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐾 ) = 𝑅 ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = ( 𝐼 mPoly 𝑅 ) ) |
21 |
20 2
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = 𝑃 ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = ( Base ‘ 𝑃 ) ) |
23 |
22 3
|
eqtr4di |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = 𝐵 ) |
24 |
10 23
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) ) |
25 |
1 12 13 14 4 5 6 7 8 9 17 24 11
|
evlsvvvallem2 |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |