Metamath Proof Explorer


Theorem evlvvvallem

Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses evlvvvallem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlvvvallem.p 𝑃 = ( 𝐼 mPoly 𝑅 )
evlvvvallem.b 𝐵 = ( Base ‘ 𝑃 )
evlvvvallem.k 𝐾 = ( Base ‘ 𝑅 )
evlvvvallem.m 𝑀 = ( mulGrp ‘ 𝑅 )
evlvvvallem.w = ( .g𝑀 )
evlvvvallem.x · = ( .r𝑅 )
evlvvvallem.i ( 𝜑𝐼𝑉 )
evlvvvallem.r ( 𝜑𝑅 ∈ CRing )
evlvvvallem.f ( 𝜑𝐹𝐵 )
evlvvvallem.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
Assertion evlvvvallem ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) finSupp ( 0g𝑅 ) )

Proof

Step Hyp Ref Expression
1 evlvvvallem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 evlvvvallem.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 evlvvvallem.b 𝐵 = ( Base ‘ 𝑃 )
4 evlvvvallem.k 𝐾 = ( Base ‘ 𝑅 )
5 evlvvvallem.m 𝑀 = ( mulGrp ‘ 𝑅 )
6 evlvvvallem.w = ( .g𝑀 )
7 evlvvvallem.x · = ( .r𝑅 )
8 evlvvvallem.i ( 𝜑𝐼𝑉 )
9 evlvvvallem.r ( 𝜑𝑅 ∈ CRing )
10 evlvvvallem.f ( 𝜑𝐹𝐵 )
11 evlvvvallem.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
12 eqid ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) = ( 𝐼 mPoly ( 𝑅s 𝐾 ) )
13 eqid ( 𝑅s 𝐾 ) = ( 𝑅s 𝐾 )
14 eqid ( Base ‘ ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) )
15 9 crngringd ( 𝜑𝑅 ∈ Ring )
16 4 subrgid ( 𝑅 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑅 ) )
17 15 16 syl ( 𝜑𝐾 ∈ ( SubRing ‘ 𝑅 ) )
18 4 ressid ( 𝑅 ∈ CRing → ( 𝑅s 𝐾 ) = 𝑅 )
19 9 18 syl ( 𝜑 → ( 𝑅s 𝐾 ) = 𝑅 )
20 19 oveq2d ( 𝜑 → ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) = ( 𝐼 mPoly 𝑅 ) )
21 20 2 eqtr4di ( 𝜑 → ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) = 𝑃 )
22 21 fveq2d ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) ) = ( Base ‘ 𝑃 ) )
23 22 3 eqtr4di ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) ) = 𝐵 )
24 10 23 eleqtrrd ( 𝜑𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅s 𝐾 ) ) ) )
25 1 12 13 14 4 5 6 7 8 9 17 24 11 evlsvvvallem2 ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) finSupp ( 0g𝑅 ) )