Step |
Hyp |
Ref |
Expression |
1 |
|
evpmodpmf1o.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
evpmodpmf1o.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
3 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝐷 ∈ Fin ) |
4 |
1
|
symggrp |
⊢ ( 𝐷 ∈ Fin → 𝑆 ∈ Grp ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝑆 ∈ Grp ) |
6 |
|
eldifi |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) |
8 |
1 2
|
evpmss |
⊢ ( pmEven ‘ 𝐷 ) ⊆ 𝑃 |
9 |
8
|
sseli |
⊢ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) → 𝑓 ∈ 𝑃 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → 𝑓 ∈ 𝑃 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
12 |
2 11
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ) |
13 |
5 7 10 12
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ) |
14 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
15 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
16 |
1 14 15
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
18 |
|
prex |
⊢ { 1 , - 1 } ∈ V |
19 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
20 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
21 |
19 20
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
22 |
15 21
|
ressplusg |
⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
23 |
18 22
|
ax-mp |
⊢ · = ( +g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
24 |
2 11 23
|
ghmlin |
⊢ ( ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) ) |
25 |
17 7 10 24
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) ) |
26 |
1 2 14
|
psgnodpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
28 |
1 2 14
|
psgnevpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) = 1 ) |
29 |
28
|
adantlr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) = 1 ) |
30 |
27 29
|
oveq12d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) = ( - 1 · 1 ) ) |
31 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
32 |
31
|
mulm1i |
⊢ ( - 1 · 1 ) = - 1 |
33 |
30 32
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑓 ) ) = - 1 ) |
34 |
25 33
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = - 1 ) |
35 |
1 2 14
|
psgnodpmr |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = - 1 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
36 |
3 13 34 35
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
37 |
36
|
fmpttd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) : ( pmEven ‘ 𝐷 ) ⟶ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
38 |
4
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑆 ∈ Grp ) |
39 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
40 |
2 39
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
41 |
4 6 40
|
syl2an |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
43 |
|
eldifi |
⊢ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝑔 ∈ 𝑃 ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑔 ∈ 𝑃 ) |
45 |
2 11
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ) |
46 |
38 42 44 45
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ) |
47 |
16
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
48 |
2 11 23
|
ghmlin |
⊢ ( ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) ) |
49 |
47 42 44 48
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) ) |
50 |
1 2 39
|
symginv |
⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
51 |
6 50
|
syl |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
52 |
51
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
53 |
52
|
fveq2d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) ) |
54 |
1 2 14
|
psgnodpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) = - 1 ) |
55 |
54
|
adantlr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) = - 1 ) |
56 |
53 55
|
oveq12d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ 𝑔 ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) ) |
57 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐷 ∈ Fin ) |
58 |
6
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐹 ∈ 𝑃 ) |
59 |
1 14 2
|
psgninv |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) ) |
61 |
26
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
62 |
60 61
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) = - 1 ) |
63 |
62
|
oveq1d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) = ( - 1 · - 1 ) ) |
64 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
65 |
63 64
|
eqtrdi |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ◡ 𝐹 ) · - 1 ) = 1 ) |
66 |
49 56 65
|
3eqtrd |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) |
67 |
1 2 14
|
psgnevpmb |
⊢ ( 𝐷 ∈ Fin → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) ) ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 1 ) ) ) |
69 |
46 66 68
|
mpbir2and |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ∈ ( pmEven ‘ 𝐷 ) ) |
70 |
69
|
fmpttd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) : ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ⟶ ( pmEven ‘ 𝐷 ) ) |
71 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
72 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
73 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
74 |
36 71 72 73
|
fmptco |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) ) |
75 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
76 |
2 11 75 39
|
grplinv |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) = ( 0g ‘ 𝑆 ) ) |
77 |
5 7 76
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) = ( 0g ‘ 𝑆 ) ) |
78 |
77
|
oveq1d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) ) |
79 |
41
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ) |
80 |
2 11
|
grpass |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
81 |
5 79 7 10 80
|
syl13anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝐹 ) ( +g ‘ 𝑆 ) 𝑓 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) |
82 |
2 11 75
|
grplid |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑓 ∈ 𝑃 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) = 𝑓 ) |
83 |
5 10 82
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑓 ) = 𝑓 ) |
84 |
78 81 83
|
3eqtr3d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) = 𝑓 ) |
85 |
84
|
mpteq2dva |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) ) |
86 |
74 85
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) ) |
87 |
|
mptresid |
⊢ ( I ↾ ( pmEven ‘ 𝐷 ) ) = ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ 𝑓 ) |
88 |
86 87
|
eqtr4di |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ∘ ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ) = ( I ↾ ( pmEven ‘ 𝐷 ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑓 = ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) → ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
90 |
69 72 71 89
|
fmptco |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) ) |
91 |
2 11 75 39
|
grprinv |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 0g ‘ 𝑆 ) ) |
92 |
4 6 91
|
syl2an |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 0g ‘ 𝑆 ) ) |
93 |
92
|
oveq1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) ) |
95 |
2 11
|
grpass |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐹 ∈ 𝑃 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃 ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
96 |
38 58 42 44 95
|
syl13anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝐹 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) 𝑔 ) = ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) |
97 |
2 11 75
|
grplid |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑔 ∈ 𝑃 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) = 𝑔 ) |
98 |
38 44 97
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑔 ) = 𝑔 ) |
99 |
94 96 98
|
3eqtr3d |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ∧ 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) = 𝑔 ) |
100 |
99
|
mpteq2dva |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) ) |
101 |
90 100
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) ) |
102 |
|
mptresid |
⊢ ( I ↾ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) = ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ 𝑔 ) |
103 |
101 102
|
eqtr4di |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) ∘ ( 𝑔 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↦ ( ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ( +g ‘ 𝑆 ) 𝑔 ) ) ) = ( I ↾ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) ) |
104 |
37 70 88 103
|
fcof1od |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑓 ∈ ( pmEven ‘ 𝐷 ) ↦ ( 𝐹 ( +g ‘ 𝑆 ) 𝑓 ) ) : ( pmEven ‘ 𝐷 ) –1-1-onto→ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |