Metamath Proof Explorer


Theorem evpmss

Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s 𝑆 = ( SymGrp ‘ 𝐷 )
evpmss.p 𝑃 = ( Base ‘ 𝑆 )
Assertion evpmss ( pmEven ‘ 𝐷 ) ⊆ 𝑃

Proof

Step Hyp Ref Expression
1 evpmss.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 evpmss.p 𝑃 = ( Base ‘ 𝑆 )
3 fveq2 ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) )
4 3 cnveqd ( 𝑑 = 𝐷 ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) )
5 4 imaeq1d ( 𝑑 = 𝐷 → ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) )
6 df-evpm pmEven = ( 𝑑 ∈ V ↦ ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) )
7 fvex ( pmSgn ‘ 𝐷 ) ∈ V
8 7 cnvex ( pmSgn ‘ 𝐷 ) ∈ V
9 8 imaex ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ V
10 5 6 9 fvmpt ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) )
11 cnvimass ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ dom ( pmSgn ‘ 𝐷 )
12 eqid ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 )
13 eqid ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) = ( 𝑆s dom ( pmSgn ‘ 𝐷 ) )
14 eqid ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
15 1 12 13 14 psgnghm ( 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
16 eqid ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) = ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) )
17 eqid ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) )
18 16 17 ghmf ( ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
19 fdm ( ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) )
20 15 18 19 3syl ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) )
21 13 2 ressbasss ( Base ‘ ( 𝑆s dom ( pmSgn ‘ 𝐷 ) ) ) ⊆ 𝑃
22 20 21 eqsstrdi ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) ⊆ 𝑃 )
23 11 22 sstrid ( 𝐷 ∈ V → ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ 𝑃 )
24 10 23 eqsstrd ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 )
25 fvprc ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ∅ )
26 0ss ∅ ⊆ 𝑃
27 25 26 eqsstrdi ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 )
28 24 27 pm2.61i ( pmEven ‘ 𝐷 ) ⊆ 𝑃