| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmss.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | evpmss.p | ⊢ 𝑃  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( pmSgn ‘ 𝑑 )  =  ( pmSgn ‘ 𝐷 ) ) | 
						
							| 4 | 3 | cnveqd | ⊢ ( 𝑑  =  𝐷  →  ◡ ( pmSgn ‘ 𝑑 )  =  ◡ ( pmSgn ‘ 𝐷 ) ) | 
						
							| 5 | 4 | imaeq1d | ⊢ ( 𝑑  =  𝐷  →  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } )  =  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } ) ) | 
						
							| 6 |  | df-evpm | ⊢ pmEven  =  ( 𝑑  ∈  V  ↦  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } ) ) | 
						
							| 7 |  | fvex | ⊢ ( pmSgn ‘ 𝐷 )  ∈  V | 
						
							| 8 | 7 | cnvex | ⊢ ◡ ( pmSgn ‘ 𝐷 )  ∈  V | 
						
							| 9 | 8 | imaex | ⊢ ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ∈  V | 
						
							| 10 | 5 6 9 | fvmpt | ⊢ ( 𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  =  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } ) ) | 
						
							| 11 |  | cnvimass | ⊢ ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ⊆  dom  ( pmSgn ‘ 𝐷 ) | 
						
							| 12 |  | eqid | ⊢ ( pmSgn ‘ 𝐷 )  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) )  =  ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 15 | 1 12 13 14 | psgnghm | ⊢ ( 𝐷  ∈  V  →  ( pmSgn ‘ 𝐷 )  ∈  ( ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) )  =  ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 18 | 16 17 | ghmf | ⊢ ( ( pmSgn ‘ 𝐷 )  ∈  ( ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 19 |  | fdm | ⊢ ( ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  dom  ( pmSgn ‘ 𝐷 )  =  ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) ) ) | 
						
							| 20 | 15 18 19 | 3syl | ⊢ ( 𝐷  ∈  V  →  dom  ( pmSgn ‘ 𝐷 )  =  ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) ) ) | 
						
							| 21 | 13 2 | ressbasss | ⊢ ( Base ‘ ( 𝑆  ↾s  dom  ( pmSgn ‘ 𝐷 ) ) )  ⊆  𝑃 | 
						
							| 22 | 20 21 | eqsstrdi | ⊢ ( 𝐷  ∈  V  →  dom  ( pmSgn ‘ 𝐷 )  ⊆  𝑃 ) | 
						
							| 23 | 11 22 | sstrid | ⊢ ( 𝐷  ∈  V  →  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ⊆  𝑃 ) | 
						
							| 24 | 10 23 | eqsstrd | ⊢ ( 𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  ⊆  𝑃 ) | 
						
							| 25 |  | fvprc | ⊢ ( ¬  𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  =  ∅ ) | 
						
							| 26 |  | 0ss | ⊢ ∅  ⊆  𝑃 | 
						
							| 27 | 25 26 | eqsstrdi | ⊢ ( ¬  𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  ⊆  𝑃 ) | 
						
							| 28 | 24 27 | pm2.61i | ⊢ ( pmEven ‘ 𝐷 )  ⊆  𝑃 |