| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bndth.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | bndth.2 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 3 |  | bndth.3 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | bndth.4 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 5 |  | evth.5 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 6 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  𝐽  ∈  Comp ) | 
						
							| 7 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  𝐽  ∈  Top ) | 
						
							| 9 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 11 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 12 | 11 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 14 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  1  ∈  ℂ ) | 
						
							| 15 | 10 13 14 | cnmptc | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  1 )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 16 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 17 | 2 | unieqi | ⊢ ∪  𝐾  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 18 | 16 17 | eqtr4i | ⊢ ℝ  =  ∪  𝐾 | 
						
							| 19 | 1 18 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 21 | 20 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 22 | 20 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑋 ) | 
						
							| 23 | 22 5 | eqnetrd | ⊢ ( 𝜑  →  dom  𝐹  ≠  ∅ ) | 
						
							| 24 |  | dm0rn0 | ⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ ) | 
						
							| 25 | 24 | necon3bii | ⊢ ( dom  𝐹  ≠  ∅  ↔  ran  𝐹  ≠  ∅ ) | 
						
							| 26 | 23 25 | sylib | ⊢ ( 𝜑  →  ran  𝐹  ≠  ∅ ) | 
						
							| 27 | 1 2 3 4 | bndth | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  𝑥 ) | 
						
							| 28 | 20 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝑧  ≤  𝑥  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑥 ) ) | 
						
							| 30 | 29 | ralrn | ⊢ ( 𝐹  Fn  𝑋  →  ( ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  𝑥 ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  𝑥 ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  𝑥 ) ) | 
						
							| 33 | 27 32 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 ) | 
						
							| 34 | 21 26 33 | 3jca | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 ) ) | 
						
							| 35 |  | suprcl | ⊢ ( ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 37 | 36 | recnd | ⊢ ( 𝜑  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 39 | 10 13 38 | cnmptc | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  sup ( ran  𝐹 ,  ℝ ,   <  ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 40 | 20 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 41 | 11 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 42 |  | cnrest2r | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  ⊆  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  ⊆  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 44 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 45 | 2 44 | eqtri | ⊢ 𝐾  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 46 | 45 | oveq2i | ⊢ ( 𝐽  Cn  𝐾 )  =  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 47 | 4 46 | eleqtrdi | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) | 
						
							| 48 | 43 47 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 49 | 40 48 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 51 | 11 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 53 | 10 39 50 52 | cnmpt12f | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 54 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 55 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) | 
						
							| 56 | 55 | adantll | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) | 
						
							| 57 |  | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 58 | 56 57 | sylib | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 59 | 58 | simpld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 60 | 54 59 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 62 | 54 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 63 | 59 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 64 | 58 | simprd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 65 | 64 | necomd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≠  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 66 | 62 63 65 | subne0d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ≠  0 ) | 
						
							| 67 |  | eldifsn | ⊢ ( ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ( ℂ  ∖  { 0 } )  ↔  ( ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℂ  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ≠  0 ) ) | 
						
							| 68 | 61 66 67 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 69 | 68 | fmpttd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) : 𝑋 ⟶ ( ℂ  ∖  { 0 } ) ) | 
						
							| 70 | 69 | frnd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ran  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ⊆  ( ℂ  ∖  { 0 } ) ) | 
						
							| 71 |  | difssd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( ℂ  ∖  { 0 } )  ⊆  ℂ ) | 
						
							| 72 |  | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ⊆  ( ℂ  ∖  { 0 } )  ∧  ( ℂ  ∖  { 0 } )  ⊆  ℂ )  →  ( ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) ) ) ) | 
						
							| 73 | 13 70 71 72 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) ) ) ) | 
						
							| 74 | 53 73 | mpbid | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) ) ) | 
						
							| 75 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) | 
						
							| 76 | 11 75 | divcn | ⊢  /   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →   /   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  { 0 } ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 78 | 10 15 74 77 | cnmpt12f | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 79 | 60 66 | rereccld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑧  ∈  𝑋 )  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 80 | 79 | fmpttd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 81 | 80 | frnd | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ran  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ⊆  ℝ ) | 
						
							| 82 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 84 |  | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 85 | 13 81 83 84 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 86 | 78 85 | mpbid | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) | 
						
							| 87 | 86 46 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 88 | 1 2 6 87 | bndth | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥 ) | 
						
							| 89 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 90 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 91 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 92 |  | ifcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ∈  ℝ )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ∈  ℝ ) | 
						
							| 93 | 90 91 92 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ∈  ℝ ) | 
						
							| 94 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 95 | 91 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 96 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 97 | 96 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  0  <  1 ) | 
						
							| 98 |  | max1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  1  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 99 | 91 90 98 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  1  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 100 | 94 95 93 97 99 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  0  <  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 101 | 100 | gt0ne0d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ≠  0 ) | 
						
							| 102 | 93 101 | rereccld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ∈  ℝ ) | 
						
							| 103 | 93 100 | recgt0d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  0  <  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 104 | 102 103 | elrpd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ∈  ℝ+ ) | 
						
							| 105 | 89 104 | ltsubrpd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  <  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 106 | 89 102 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ∈  ℝ ) | 
						
							| 107 | 106 89 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  <  sup ( ran  𝐹 ,  ℝ ,   <  )  ↔  ¬  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 108 | 105 107 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ¬  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) | 
						
							| 109 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 110 |  | max2 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  𝑥  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 111 | 91 109 110 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 112 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 113 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) | 
						
							| 114 | 113 | ad2ant2l | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) | 
						
							| 115 |  | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 116 | 114 115 | sylib | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 117 | 116 | simpld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 118 | 112 117 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 119 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 120 | 28 119 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 121 |  | suprub | ⊢ ( ( ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 )  →  ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 122 | 34 120 121 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 123 | 122 | ad2ant2rl | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 124 | 116 | simprd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 125 | 124 | necomd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 126 | 117 112 123 125 | leneltd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  <  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 127 | 117 112 | posdifd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑦 )  <  sup ( ran  𝐹 ,  ℝ ,   <  )  ↔  0  <  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 128 | 126 127 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  0  <  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 129 | 128 | gt0ne0d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ≠  0 ) | 
						
							| 130 | 118 129 | rereccld | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 131 | 109 91 92 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ∈  ℝ ) | 
						
							| 132 |  | letr | ⊢ ( ( ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ∈  ℝ )  →  ( ( ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  𝑥  ∧  𝑥  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 133 | 130 109 131 132 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  𝑥  ∧  𝑥  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 134 | 111 133 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  𝑥  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 135 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 136 | 135 | oveq2d | ⊢ ( 𝑧  =  𝑦  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) )  =  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 137 | 136 | oveq2d | ⊢ ( 𝑧  =  𝑦  →  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) )  =  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 138 |  | eqid | ⊢ ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 139 |  | ovex | ⊢ ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ∈  V | 
						
							| 140 | 137 138 139 | fvmpt | ⊢ ( 𝑦  ∈  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  =  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑦  ∈  𝑋  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  𝑥 ) ) | 
						
							| 142 | 141 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  𝑥 ) ) | 
						
							| 143 | 102 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ∈  ℝ ) | 
						
							| 144 | 100 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  0  <  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 145 | 131 144 | recgt0d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  0  <  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 146 |  | lerec | ⊢ ( ( ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ∈  ℝ  ∧  0  <  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ∧  ( ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ  ∧  0  <  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) ) )  →  ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 1  /  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 147 | 143 145 118 128 146 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 1  /  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 148 |  | lesub | ⊢ ( ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ∈  ℝ  ∧  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ℝ )  →  ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 149 | 143 112 117 148 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 150 | 131 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ∈  ℂ ) | 
						
							| 151 | 101 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  if ( 1  ≤  𝑥 ,  𝑥 ,  1 )  ≠  0 ) | 
						
							| 152 | 150 151 | recrecd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( 1  /  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  =  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) | 
						
							| 153 | 152 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 1  /  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 154 | 147 149 153 | 3bitr3d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) | 
						
							| 155 | 134 142 154 | 3imtr4d | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 156 | 155 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 157 | 156 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  →  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 158 | 34 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 ) ) | 
						
							| 159 |  | suprleub | ⊢ ( ( ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ∈  ℝ )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 160 | 158 106 159 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 161 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  𝐹  Fn  𝑋 ) | 
						
							| 162 |  | breq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝑧  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 163 | 162 | ralrn | ⊢ ( 𝐹  Fn  𝑋  →  ( ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 164 | 161 163 | syl | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  𝐹 𝑧  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 165 | 160 164 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 166 | 157 165 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 1  /  if ( 1  ≤  𝑥 ,  𝑥 ,  1 ) ) ) ) ) | 
						
							| 167 | 108 166 | mtod | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  ∧  𝑥  ∈  ℝ )  →  ¬  ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥 ) | 
						
							| 168 | 167 | nrexdv | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) )  →  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  ( 1  /  ( sup ( ran  𝐹 ,  ℝ ,   <  )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 )  ≤  𝑥 ) | 
						
							| 169 | 88 168 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) | 
						
							| 170 | 122 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 171 |  | breq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 172 | 171 | ralbidv | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  ( ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 173 | 170 172 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑥 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 174 | 173 | necon3bd | ⊢ ( 𝜑  →  ( ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑥 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑥 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 176 | 20 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 177 |  | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 178 | 177 | baib | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 179 | 176 178 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 180 | 175 179 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 181 | 180 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 182 |  | ffnfv | ⊢ ( 𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ( 𝐹  Fn  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 183 | 182 | baib | ⊢ ( 𝐹  Fn  𝑋  →  ( 𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ∀ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 184 | 28 183 | syl | ⊢ ( 𝜑  →  ( 𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } )  ↔  ∀ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 185 | 181 184 | sylibrd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  →  𝐹 : 𝑋 ⟶ ( ℝ  ∖  { sup ( ran  𝐹 ,  ℝ ,   <  ) } ) ) ) | 
						
							| 186 | 169 185 | mtod | ⊢ ( 𝜑  →  ¬  ∀ 𝑥  ∈  𝑋 ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 187 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ¬  ∀ 𝑥  ∈  𝑋 ¬  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 188 | 186 187 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) |