| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bndth.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | bndth.2 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 3 |  | bndth.3 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | bndth.4 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 5 |  | evth.5 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 6 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 8 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 10 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 11 | 2 | unieqi | ⊢ ∪  𝐾  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 12 | 10 11 | eqtr4i | ⊢ ℝ  =  ∪  𝐾 | 
						
							| 13 | 1 12 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 15 | 14 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 16 | 15 4 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 17 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 18 | 2 17 | eqeltri | ⊢ 𝐾  ∈  ( TopOn ‘ ℝ ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ℝ ) ) | 
						
							| 20 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 21 | 20 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 23 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 24 | 19 22 23 | cnmptc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  0 )  ∈  ( 𝐾  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 25 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 26 | 2 25 | eqtri | ⊢ 𝐾  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 27 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 29 | 22 | cnmptid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  𝑦 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 30 | 26 22 28 29 | cnmpt1res | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  𝑦 )  ∈  ( 𝐾  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 31 | 20 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 33 | 19 24 30 32 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 34 |  | df-neg | ⊢ - 𝑦  =  ( 0  −  𝑦 ) | 
						
							| 35 |  | renegcl | ⊢ ( 𝑦  ∈  ℝ  →  - 𝑦  ∈  ℝ ) | 
						
							| 36 | 34 35 | eqeltrrid | ⊢ ( 𝑦  ∈  ℝ  →  ( 0  −  𝑦 )  ∈  ℝ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 0  −  𝑦 )  ∈  ℝ ) | 
						
							| 38 | 37 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) ) : ℝ ⟶ ℝ ) | 
						
							| 39 | 38 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ⊆  ℝ ) | 
						
							| 40 |  | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 41 | 22 39 28 40 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 42 | 33 41 | mpbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) | 
						
							| 43 | 26 | oveq2i | ⊢ ( 𝐾  Cn  𝐾 )  =  ( 𝐾  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 44 | 42 43 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 0  −  𝑦 ) )  ∈  ( 𝐾  Cn  𝐾 ) ) | 
						
							| 45 |  | negeq | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  →  - 𝑦  =  - ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 46 | 34 45 | eqtr3id | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  →  ( 0  −  𝑦 )  =  - ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 47 | 9 16 19 44 46 | cnmpt11 | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 48 | 1 2 3 47 5 | evth | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  ≤  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 50 | 49 | negeqd | ⊢ ( 𝑧  =  𝑦  →  - ( 𝐹 ‘ 𝑧 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) )  =  ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 52 |  | negex | ⊢ - ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 53 | 50 51 52 | fvmpt | ⊢ ( 𝑦  ∈  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 56 | 55 | negeqd | ⊢ ( 𝑧  =  𝑥  →  - ( 𝐹 ‘ 𝑧 )  =  - ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 57 |  | negex | ⊢ - ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 58 | 56 51 57 | fvmpt | ⊢ ( 𝑥  ∈  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  =  - ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  =  - ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 60 | 54 59 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  ≤  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  ↔  - ( 𝐹 ‘ 𝑦 )  ≤  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 61 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 63 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 64 | 63 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 65 | 62 64 | lenegd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  - ( 𝐹 ‘ 𝑦 )  ≤  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 66 | 60 65 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  ≤  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 67 | 66 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  ≤  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 68 | 67 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 )  ≤  ( ( 𝑧  ∈  𝑋  ↦  - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 )  ↔  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 69 | 48 68 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑦 ) ) |