| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
evthicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
evthicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
evthicc.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
eqid |
⊢ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 6 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 7 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 8 |
6 7
|
icccmp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 10 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 13 |
11 12
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 14 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) |
| 15 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 16 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 18 |
15 17
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 19 |
14 15 16 18
|
cncfmet |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 20 |
13 12 19
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 21 |
6 16
|
resubmet |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 22 |
11 21
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 24 |
20 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 25 |
4 24
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 26 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 27 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 28 |
27
|
restuni |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝐴 [,] 𝐵 ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 29 |
26 11 28
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 30 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 31 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 32 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 33 |
30 31 3 32
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 34 |
33
|
ne0d |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ≠ ∅ ) |
| 35 |
29 34
|
eqnetrrd |
⊢ ( 𝜑 → ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 36 |
5 6 9 25 35
|
evth |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 |
29
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 |
29 37
|
rexeqbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
36 38
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 40 |
5 6 9 25 35
|
evth2 |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 41 |
29
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
| 42 |
29 41
|
rexeqbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
| 43 |
40 42
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 44 |
39 43
|
jca |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |