| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evthiccabs.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | evthiccabs.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | evthiccabs.aleb | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | evthiccabs.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 5 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 6 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 7 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) | 
						
							| 9 | 8 4 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 10 |  | abscncf | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  abs  ∈  ( ℂ –cn→ ℝ ) ) | 
						
							| 12 | 9 11 | cncfco | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 13 | 1 2 3 12 | evthicc | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑤 ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 15 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 16 |  | ffun | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  →  Fun  𝐹 ) | 
						
							| 17 | 4 15 16 | 3syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  Fun  𝐹 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 20 |  | fdm | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  →  dom  𝐹  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 21 | 4 15 20 | 3syl | ⊢ ( 𝜑  →  dom  𝐹  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  =  dom  𝐹 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐵 )  =  dom  𝐹 ) | 
						
							| 24 | 19 23 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 25 |  | fvco | ⊢ ( ( Fun  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 | 18 24 25 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  Fun  𝐹 ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 30 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐵 )  =  dom  𝐹 ) | 
						
							| 31 | 29 30 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 32 |  | fvco | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 28 31 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 27 34 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 35 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 36 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ↔  ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 14 37 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 39 | 13 | simprd | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑤 ) ) | 
						
							| 40 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  Fun  𝐹 ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 42 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐵 )  =  dom  𝐹 ) | 
						
							| 43 | 41 42 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 44 |  | fvco | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 45 | 40 43 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 47 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  Fun  𝐹 ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑤  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 49 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐵 )  =  dom  𝐹 ) | 
						
							| 50 | 48 49 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑤  ∈  dom  𝐹 ) | 
						
							| 51 |  | fvco | ⊢ ( ( Fun  𝐹  ∧  𝑤  ∈  dom  𝐹 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  =  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 52 | 47 50 51 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  =  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  =  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 54 | 46 53 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑤  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 55 | 54 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  ↔  ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 56 | 55 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  ≤  ( ( abs  ∘  𝐹 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 57 | 39 56 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 58 | 38 57 | jca | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑤  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |