Step |
Hyp |
Ref |
Expression |
1 |
|
ewlksfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
1
|
ewlkprop |
⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
3 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝐹 ‘ ( 𝑘 − 1 ) ) = ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ) |
5 |
|
2fveq3 |
⊢ ( 𝑘 = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) |
6 |
4 5
|
ineq12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
9 |
8
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
11 |
2 10
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) |