Step |
Hyp |
Ref |
Expression |
1 |
|
ewlksfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
df-ewlks |
⊢ EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
3 |
2
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) ) |
4 |
|
fvexd |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) ∈ V ) |
5 |
|
simpr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝑔 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
9 |
5 8
|
eqtrd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝐺 ) ) |
10 |
9
|
dmeqd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → dom 𝑖 = dom ( iEdg ‘ 𝐺 ) ) |
11 |
|
wrdeq |
⊢ ( dom 𝑖 = dom ( iEdg ‘ 𝐺 ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) |
13 |
12
|
eleq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑓 ∈ Word dom 𝑖 ↔ 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ) |
14 |
|
simpr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑠 = 𝑆 ) |
16 |
9
|
fveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
17 |
9
|
fveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
18 |
16 17
|
ineq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
20 |
15 19
|
breq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
21 |
20
|
ralbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
22 |
13 21
|
anbi12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
23 |
4 22
|
sbcied |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
24 |
23
|
abbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
26 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
27 |
26
|
adantr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝐺 ∈ V ) |
28 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝑆 ∈ ℕ0* ) |
29 |
|
df-rab |
⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } |
30 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
31 |
30
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
32 |
31
|
wrdexi |
⊢ Word dom ( iEdg ‘ 𝐺 ) ∈ V |
33 |
32
|
rabex |
⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V |
34 |
33
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V ) |
35 |
29 34
|
eqeltrrid |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ∈ V ) |
36 |
3 25 27 28 35
|
ovmpod |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
37 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
38 |
37
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( iEdg ‘ 𝐺 ) = 𝐼 ) |
39 |
38
|
dmeqd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → dom ( iEdg ‘ 𝐺 ) = dom 𝐼 ) |
40 |
|
wrdeq |
⊢ ( dom ( iEdg ‘ 𝐺 ) = dom 𝐼 → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) |
42 |
41
|
eleq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ↔ 𝑓 ∈ Word dom 𝐼 ) ) |
43 |
38
|
fveq1d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
44 |
38
|
fveq1d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
45 |
43 44
|
ineq12d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
47 |
46
|
breq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
48 |
47
|
ralbidv |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
49 |
42 48
|
anbi12d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
50 |
49
|
abbidv |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
51 |
36 50
|
eqtrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |