| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ewlksfval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | df-ewlks | ⊢  EdgWalks   =  ( 𝑔  ∈  V ,  𝑠  ∈  ℕ0*  ↦  { 𝑓  ∣  [ ( iEdg ‘ 𝑔 )  /  𝑖 ] ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →   EdgWalks   =  ( 𝑔  ∈  V ,  𝑠  ∈  ℕ0*  ↦  { 𝑓  ∣  [ ( iEdg ‘ 𝑔 )  /  𝑖 ] ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) ) | 
						
							| 4 |  | fvexd | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  →  ( iEdg ‘ 𝑔 )  ∈  V ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  𝑖  =  ( iEdg ‘ 𝑔 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 | 5 8 | eqtrd | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  𝑖  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  dom  𝑖  =  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 11 |  | wrdeq | ⊢ ( dom  𝑖  =  dom  ( iEdg ‘ 𝐺 )  →  Word  dom  𝑖  =  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  Word  dom  𝑖  =  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( 𝑓  ∈  Word  dom  𝑖  ↔  𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  →  𝑠  =  𝑆 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  𝑠  =  𝑆 ) | 
						
							| 16 | 9 | fveq1d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) ) ) | 
						
							| 17 | 9 | fveq1d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 18 | 16 17 | ineq12d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) )  =  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  =  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 20 | 15 19 | breq12d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 22 | 13 21 | anbi12d | ⊢ ( ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  ∧  𝑖  =  ( iEdg ‘ 𝑔 ) )  →  ( ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) )  ↔  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 23 | 4 22 | sbcied | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  →  ( [ ( iEdg ‘ 𝑔 )  /  𝑖 ] ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) )  ↔  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 24 | 23 | abbidv | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 )  →  { 𝑓  ∣  [ ( iEdg ‘ 𝑔 )  /  𝑖 ] ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) }  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  { 𝑓  ∣  [ ( iEdg ‘ 𝑔 )  /  𝑖 ] ( 𝑓  ∈  Word  dom  𝑖  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠  ≤  ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) }  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | 
						
							| 26 |  | elex | ⊢ ( 𝐺  ∈  𝑊  →  𝐺  ∈  V ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  𝐺  ∈  V ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  𝑆  ∈  ℕ0* ) | 
						
							| 29 |  | df-rab | ⊢ { 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } | 
						
							| 30 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 31 | 30 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 32 | 31 | wrdexi | ⊢ Word  dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 33 | 32 | rabex | ⊢ { 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  { 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) }  ∈  V ) | 
						
							| 35 | 29 34 | eqeltrrid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) }  ∈  V ) | 
						
							| 36 | 3 25 27 28 35 | ovmpod | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( 𝐺  EdgWalks  𝑆 )  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | 
						
							| 37 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 )  =  𝐼 | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( iEdg ‘ 𝐺 )  =  𝐼 ) | 
						
							| 39 | 38 | dmeqd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  dom  ( iEdg ‘ 𝐺 )  =  dom  𝐼 ) | 
						
							| 40 |  | wrdeq | ⊢ ( dom  ( iEdg ‘ 𝐺 )  =  dom  𝐼  →  Word  dom  ( iEdg ‘ 𝐺 )  =  Word  dom  𝐼 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  Word  dom  ( iEdg ‘ 𝐺 )  =  Word  dom  𝐼 ) | 
						
							| 42 | 41 | eleq2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ↔  𝑓  ∈  Word  dom  𝐼 ) ) | 
						
							| 43 | 38 | fveq1d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  =  ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) ) ) | 
						
							| 44 | 38 | fveq1d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 45 | 43 44 | ineq12d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) )  =  ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  =  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 47 | 46 | breq2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  𝑆  ≤  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 48 | 47 | ralbidv | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) )  ↔  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 49 | 42 48 | anbi12d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) )  ↔  ( 𝑓  ∈  Word  dom  𝐼  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 50 | 49 | abbidv | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) }  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | 
						
							| 51 | 36 50 | eqtrd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  ℕ0* )  →  ( 𝐺  EdgWalks  𝑆 )  =  { 𝑓  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆  ≤  ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘  −  1 ) ) )  ∩  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |