| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 2 |
1
|
oveq1i |
⊢ ( 5 C 3 ) = ( ( 4 + 1 ) C 3 ) |
| 3 |
|
4bc3eq4 |
⊢ ( 4 C 3 ) = 4 |
| 4 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 5 |
4
|
oveq2i |
⊢ ( 4 C ( 3 − 1 ) ) = ( 4 C 2 ) |
| 6 |
|
4bc2eq6 |
⊢ ( 4 C 2 ) = 6 |
| 7 |
5 6
|
eqtri |
⊢ ( 4 C ( 3 − 1 ) ) = 6 |
| 8 |
3 7
|
oveq12i |
⊢ ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( 4 + 6 ) |
| 9 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 10 |
|
3z |
⊢ 3 ∈ ℤ |
| 11 |
|
bcpasc |
⊢ ( ( 4 ∈ ℕ0 ∧ 3 ∈ ℤ ) → ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( ( 4 + 1 ) C 3 ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( ( 4 + 1 ) C 3 ) |
| 13 |
|
6cn |
⊢ 6 ∈ ℂ |
| 14 |
|
4cn |
⊢ 4 ∈ ℂ |
| 15 |
|
6p4e10 |
⊢ ( 6 + 4 ) = ; 1 0 |
| 16 |
13 14 15
|
addcomli |
⊢ ( 4 + 6 ) = ; 1 0 |
| 17 |
8 12 16
|
3eqtr3i |
⊢ ( ( 4 + 1 ) C 3 ) = ; 1 0 |
| 18 |
2 17
|
eqtri |
⊢ ( 5 C 3 ) = ; 1 0 |