| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ex-fl | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ∧  ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2 ) | 
						
							| 2 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 3 | 2 | rehalfcli | ⊢ ( 3  /  2 )  ∈  ℝ | 
						
							| 4 | 3 | renegcli | ⊢ - ( 3  /  2 )  ∈  ℝ | 
						
							| 5 |  | ceilval | ⊢ ( - ( 3  /  2 )  ∈  ℝ  →  ( ⌈ ‘ - ( 3  /  2 ) )  =  - ( ⌊ ‘ - - ( 3  /  2 ) ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ⌈ ‘ - ( 3  /  2 ) )  =  - ( ⌊ ‘ - - ( 3  /  2 ) ) | 
						
							| 7 | 3 | recni | ⊢ ( 3  /  2 )  ∈  ℂ | 
						
							| 8 | 7 | negnegi | ⊢ - - ( 3  /  2 )  =  ( 3  /  2 ) | 
						
							| 9 | 8 | eqcomi | ⊢ ( 3  /  2 )  =  - - ( 3  /  2 ) | 
						
							| 10 | 9 | fveq2i | ⊢ ( ⌊ ‘ ( 3  /  2 ) )  =  ( ⌊ ‘ - - ( 3  /  2 ) ) | 
						
							| 11 | 10 | eqeq1i | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ↔  ( ⌊ ‘ - - ( 3  /  2 ) )  =  1 ) | 
						
							| 12 | 11 | biimpi | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  →  ( ⌊ ‘ - - ( 3  /  2 ) )  =  1 ) | 
						
							| 13 | 12 | negeqd | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  →  - ( ⌊ ‘ - - ( 3  /  2 ) )  =  - 1 ) | 
						
							| 14 | 6 13 | eqtrid | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  →  ( ⌈ ‘ - ( 3  /  2 ) )  =  - 1 ) | 
						
							| 15 |  | ceilval | ⊢ ( ( 3  /  2 )  ∈  ℝ  →  ( ⌈ ‘ ( 3  /  2 ) )  =  - ( ⌊ ‘ - ( 3  /  2 ) ) ) | 
						
							| 16 | 3 15 | ax-mp | ⊢ ( ⌈ ‘ ( 3  /  2 ) )  =  - ( ⌊ ‘ - ( 3  /  2 ) ) | 
						
							| 17 |  | negeq | ⊢ ( ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2  →  - ( ⌊ ‘ - ( 3  /  2 ) )  =  - - 2 ) | 
						
							| 18 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 19 | 18 | negnegi | ⊢ - - 2  =  2 | 
						
							| 20 | 17 19 | eqtrdi | ⊢ ( ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2  →  - ( ⌊ ‘ - ( 3  /  2 ) )  =  2 ) | 
						
							| 21 | 16 20 | eqtrid | ⊢ ( ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2  →  ( ⌈ ‘ ( 3  /  2 ) )  =  2 ) | 
						
							| 22 | 14 21 | anim12ci | ⊢ ( ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ∧  ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2 )  →  ( ( ⌈ ‘ ( 3  /  2 ) )  =  2  ∧  ( ⌈ ‘ - ( 3  /  2 ) )  =  - 1 ) ) | 
						
							| 23 | 1 22 | ax-mp | ⊢ ( ( ⌈ ‘ ( 3  /  2 ) )  =  2  ∧  ( ⌈ ‘ - ( 3  /  2 ) )  =  - 1 ) |