Metamath Proof Explorer


Theorem ex-co

Description: Example for df-co . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-co ( ( exp ∘ cos ) ‘ 0 ) = e

Proof

Step Hyp Ref Expression
1 cos0 ( cos ‘ 0 ) = 1
2 1 fveq2i ( exp ‘ ( cos ‘ 0 ) ) = ( exp ‘ 1 )
3 cosf cos : ℂ ⟶ ℂ
4 0cn 0 ∈ ℂ
5 fvco3 ( ( cos : ℂ ⟶ ℂ ∧ 0 ∈ ℂ ) → ( ( exp ∘ cos ) ‘ 0 ) = ( exp ‘ ( cos ‘ 0 ) ) )
6 3 4 5 mp2an ( ( exp ∘ cos ) ‘ 0 ) = ( exp ‘ ( cos ‘ 0 ) )
7 df-e e = ( exp ‘ 1 )
8 2 6 7 3eqtr4i ( ( exp ∘ cos ) ‘ 0 ) = e