Metamath Proof Explorer


Theorem ex-dm

Description: Example for df-dm . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-dm ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → dom 𝐹 = { 2 , 3 } )

Proof

Step Hyp Ref Expression
1 dmeq ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → dom 𝐹 = dom { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } )
2 6nn 6 ∈ ℕ
3 2 elexi 6 ∈ V
4 9nn 9 ∈ ℕ
5 4 elexi 9 ∈ V
6 3 5 dmprop dom { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } = { 2 , 3 }
7 1 6 eqtrdi ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → dom 𝐹 = { 2 , 3 } )