Metamath Proof Explorer
Description: Example for df-dvds : 3 divides into 6. (Contributed by David A.
Wheeler, 19-May-2015)
|
|
Ref |
Expression |
|
Assertion |
ex-dvds |
⊢ 3 ∥ 6 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
3z |
⊢ 3 ∈ ℤ |
| 3 |
|
6nn |
⊢ 6 ∈ ℕ |
| 4 |
3
|
nnzi |
⊢ 6 ∈ ℤ |
| 5 |
1 2 4
|
3pm3.2i |
⊢ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ ) |
| 6 |
|
3cn |
⊢ 3 ∈ ℂ |
| 7 |
6
|
2timesi |
⊢ ( 2 · 3 ) = ( 3 + 3 ) |
| 8 |
|
3p3e6 |
⊢ ( 3 + 3 ) = 6 |
| 9 |
7 8
|
eqtri |
⊢ ( 2 · 3 ) = 6 |
| 10 |
|
dvds0lem |
⊢ ( ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ ) ∧ ( 2 · 3 ) = 6 ) → 3 ∥ 6 ) |
| 11 |
5 9 10
|
mp2an |
⊢ 3 ∥ 6 |