Metamath Proof Explorer


Theorem ex-eprel

Description: Example for df-eprel . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion ex-eprel 5 E { 1 , 5 }

Proof

Step Hyp Ref Expression
1 5nn 5 ∈ ℕ
2 1 elexi 5 ∈ V
3 2 prid2 5 ∈ { 1 , 5 }
4 prex { 1 , 5 } ∈ V
5 4 epeli ( 5 E { 1 , 5 } ↔ 5 ∈ { 1 , 5 } )
6 3 5 mpbir 5 E { 1 , 5 }