Description: Example for df-fac . (Contributed by AV, 4-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ex-fac | ⊢ ( ! ‘ 5 ) = ; ; 1 2 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
2 | 1 | fveq2i | ⊢ ( ! ‘ 5 ) = ( ! ‘ ( 4 + 1 ) ) |
3 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
4 | facp1 | ⊢ ( 4 ∈ ℕ0 → ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) ) | |
5 | 3 4 | ax-mp | ⊢ ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) |
6 | 2 5 | eqtri | ⊢ ( ! ‘ 5 ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) |
7 | fac4 | ⊢ ( ! ‘ 4 ) = ; 2 4 | |
8 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
9 | 7 8 | oveq12i | ⊢ ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = ( ; 2 4 · 5 ) |
10 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
12 | eqid | ⊢ ; 2 4 = ; 2 4 | |
13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
15 | 5cn | ⊢ 5 ∈ ℂ | |
16 | 2cn | ⊢ 2 ∈ ℂ | |
17 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
18 | 15 16 17 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
19 | 16 | addid2i | ⊢ ( 0 + 2 ) = 2 |
20 | 14 13 11 18 19 | decaddi | ⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
21 | 4cn | ⊢ 4 ∈ ℂ | |
22 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
23 | 15 21 22 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
24 | 10 11 3 12 13 11 20 23 | decmul1c | ⊢ ( ; 2 4 · 5 ) = ; ; 1 2 0 |
25 | 9 24 | eqtri | ⊢ ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = ; ; 1 2 0 |
26 | 6 25 | eqtri | ⊢ ( ! ‘ 5 ) = ; ; 1 2 0 |