Metamath Proof Explorer


Theorem ex-fac

Description: Example for df-fac . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-fac ( ! ‘ 5 ) = 1 2 0

Proof

Step Hyp Ref Expression
1 df-5 5 = ( 4 + 1 )
2 1 fveq2i ( ! ‘ 5 ) = ( ! ‘ ( 4 + 1 ) )
3 4nn0 4 ∈ ℕ0
4 facp1 ( 4 ∈ ℕ0 → ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) )
5 3 4 ax-mp ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) )
6 2 5 eqtri ( ! ‘ 5 ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) )
7 fac4 ( ! ‘ 4 ) = 2 4
8 4p1e5 ( 4 + 1 ) = 5
9 7 8 oveq12i ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = ( 2 4 · 5 )
10 5nn0 5 ∈ ℕ0
11 2nn0 2 ∈ ℕ0
12 eqid 2 4 = 2 4
13 0nn0 0 ∈ ℕ0
14 1nn0 1 ∈ ℕ0
15 5cn 5 ∈ ℂ
16 2cn 2 ∈ ℂ
17 5t2e10 ( 5 · 2 ) = 1 0
18 15 16 17 mulcomli ( 2 · 5 ) = 1 0
19 16 addid2i ( 0 + 2 ) = 2
20 14 13 11 18 19 decaddi ( ( 2 · 5 ) + 2 ) = 1 2
21 4cn 4 ∈ ℂ
22 5t4e20 ( 5 · 4 ) = 2 0
23 15 21 22 mulcomli ( 4 · 5 ) = 2 0
24 10 11 3 12 13 11 20 23 decmul1c ( 2 4 · 5 ) = 1 2 0
25 9 24 eqtri ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = 1 2 0
26 6 25 eqtri ( ! ‘ 5 ) = 1 2 0