| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 3 | 2 | rehalfcli | ⊢ ( 3  /  2 )  ∈  ℝ | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 | 4 | mullidi | ⊢ ( 1  ·  2 )  =  2 | 
						
							| 6 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 7 | 5 6 | eqbrtri | ⊢ ( 1  ·  2 )  <  3 | 
						
							| 8 |  | 2pos | ⊢ 0  <  2 | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 | 1 2 9 | ltmuldivi | ⊢ ( 0  <  2  →  ( ( 1  ·  2 )  <  3  ↔  1  <  ( 3  /  2 ) ) ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ ( ( 1  ·  2 )  <  3  ↔  1  <  ( 3  /  2 ) ) | 
						
							| 12 | 7 11 | mpbi | ⊢ 1  <  ( 3  /  2 ) | 
						
							| 13 | 1 3 12 | ltleii | ⊢ 1  ≤  ( 3  /  2 ) | 
						
							| 14 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 15 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 16 | 14 15 | breqtrri | ⊢ 3  <  ( 2  ·  2 ) | 
						
							| 17 | 9 8 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 18 |  | ltdivmul | ⊢ ( ( 3  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 3  /  2 )  <  2  ↔  3  <  ( 2  ·  2 ) ) ) | 
						
							| 19 | 2 9 17 18 | mp3an | ⊢ ( ( 3  /  2 )  <  2  ↔  3  <  ( 2  ·  2 ) ) | 
						
							| 20 | 16 19 | mpbir | ⊢ ( 3  /  2 )  <  2 | 
						
							| 21 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 22 | 20 21 | breqtri | ⊢ ( 3  /  2 )  <  ( 1  +  1 ) | 
						
							| 23 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 24 |  | flbi | ⊢ ( ( ( 3  /  2 )  ∈  ℝ  ∧  1  ∈  ℤ )  →  ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ↔  ( 1  ≤  ( 3  /  2 )  ∧  ( 3  /  2 )  <  ( 1  +  1 ) ) ) ) | 
						
							| 25 | 3 23 24 | mp2an | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ↔  ( 1  ≤  ( 3  /  2 )  ∧  ( 3  /  2 )  <  ( 1  +  1 ) ) ) | 
						
							| 26 | 13 22 25 | mpbir2an | ⊢ ( ⌊ ‘ ( 3  /  2 ) )  =  1 | 
						
							| 27 | 9 | renegcli | ⊢ - 2  ∈  ℝ | 
						
							| 28 | 3 | renegcli | ⊢ - ( 3  /  2 )  ∈  ℝ | 
						
							| 29 | 3 9 | ltnegi | ⊢ ( ( 3  /  2 )  <  2  ↔  - 2  <  - ( 3  /  2 ) ) | 
						
							| 30 | 20 29 | mpbi | ⊢ - 2  <  - ( 3  /  2 ) | 
						
							| 31 | 27 28 30 | ltleii | ⊢ - 2  ≤  - ( 3  /  2 ) | 
						
							| 32 | 4 | negcli | ⊢ - 2  ∈  ℂ | 
						
							| 33 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 34 |  | negdi2 | ⊢ ( ( - 2  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( - 2  +  1 )  =  ( - - 2  −  1 ) ) | 
						
							| 35 | 32 33 34 | mp2an | ⊢ - ( - 2  +  1 )  =  ( - - 2  −  1 ) | 
						
							| 36 | 4 | negnegi | ⊢ - - 2  =  2 | 
						
							| 37 | 36 | oveq1i | ⊢ ( - - 2  −  1 )  =  ( 2  −  1 ) | 
						
							| 38 | 35 37 | eqtri | ⊢ - ( - 2  +  1 )  =  ( 2  −  1 ) | 
						
							| 39 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 40 | 39 12 | eqbrtri | ⊢ ( 2  −  1 )  <  ( 3  /  2 ) | 
						
							| 41 | 38 40 | eqbrtri | ⊢ - ( - 2  +  1 )  <  ( 3  /  2 ) | 
						
							| 42 | 27 1 | readdcli | ⊢ ( - 2  +  1 )  ∈  ℝ | 
						
							| 43 | 42 3 | ltnegcon1i | ⊢ ( - ( - 2  +  1 )  <  ( 3  /  2 )  ↔  - ( 3  /  2 )  <  ( - 2  +  1 ) ) | 
						
							| 44 | 41 43 | mpbi | ⊢ - ( 3  /  2 )  <  ( - 2  +  1 ) | 
						
							| 45 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 46 |  | znegcl | ⊢ ( 2  ∈  ℤ  →  - 2  ∈  ℤ ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ - 2  ∈  ℤ | 
						
							| 48 |  | flbi | ⊢ ( ( - ( 3  /  2 )  ∈  ℝ  ∧  - 2  ∈  ℤ )  →  ( ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2  ↔  ( - 2  ≤  - ( 3  /  2 )  ∧  - ( 3  /  2 )  <  ( - 2  +  1 ) ) ) ) | 
						
							| 49 | 28 47 48 | mp2an | ⊢ ( ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2  ↔  ( - 2  ≤  - ( 3  /  2 )  ∧  - ( 3  /  2 )  <  ( - 2  +  1 ) ) ) | 
						
							| 50 | 31 44 49 | mpbir2an | ⊢ ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2 | 
						
							| 51 | 26 50 | pm3.2i | ⊢ ( ( ⌊ ‘ ( 3  /  2 ) )  =  1  ∧  ( ⌊ ‘ - ( 3  /  2 ) )  =  - 2 ) |