Step |
Hyp |
Ref |
Expression |
1 |
|
ex-fpar.h |
⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) |
2 |
|
ex-fpar.a |
⊢ 𝐴 = ( 0 [,) +∞ ) |
3 |
|
ex-fpar.b |
⊢ 𝐵 = ℝ |
4 |
|
ex-fpar.f |
⊢ 𝐹 = ( √ ↾ 𝐴 ) |
5 |
|
ex-fpar.g |
⊢ 𝐺 = ( sin ↾ 𝐵 ) |
6 |
|
df-ov |
⊢ ( 𝑋 ( + ∘ 𝐻 ) 𝑌 ) = ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) |
7 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
8 |
|
ffn |
⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) |
9 |
7 8
|
ax-mp |
⊢ √ Fn ℂ |
10 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
11 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
12 |
10 11
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
13 |
|
fnssres |
⊢ ( ( √ Fn ℂ ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( √ ↾ ( 0 [,) +∞ ) ) Fn ( 0 [,) +∞ ) ) |
14 |
2
|
reseq2i |
⊢ ( √ ↾ 𝐴 ) = ( √ ↾ ( 0 [,) +∞ ) ) |
15 |
14
|
fneq1i |
⊢ ( ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ↔ ( √ ↾ ( 0 [,) +∞ ) ) Fn ( 0 [,) +∞ ) ) |
16 |
13 15
|
sylibr |
⊢ ( ( √ Fn ℂ ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) |
17 |
9 12 16
|
mp2an |
⊢ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) |
18 |
|
id |
⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → 𝐹 = ( √ ↾ 𝐴 ) ) |
19 |
2
|
a1i |
⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → 𝐴 = ( 0 [,) +∞ ) ) |
20 |
18 19
|
fneq12d |
⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → ( 𝐹 Fn 𝐴 ↔ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) ) |
21 |
4 20
|
ax-mp |
⊢ ( 𝐹 Fn 𝐴 ↔ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) |
22 |
17 21
|
mpbir |
⊢ 𝐹 Fn 𝐴 |
23 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
24 |
|
ffn |
⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) |
25 |
23 24
|
ax-mp |
⊢ sin Fn ℂ |
26 |
|
fnssres |
⊢ ( ( sin Fn ℂ ∧ ℝ ⊆ ℂ ) → ( sin ↾ ℝ ) Fn ℝ ) |
27 |
3
|
reseq2i |
⊢ ( sin ↾ 𝐵 ) = ( sin ↾ ℝ ) |
28 |
27
|
fneq1i |
⊢ ( ( sin ↾ 𝐵 ) Fn ℝ ↔ ( sin ↾ ℝ ) Fn ℝ ) |
29 |
26 28
|
sylibr |
⊢ ( ( sin Fn ℂ ∧ ℝ ⊆ ℂ ) → ( sin ↾ 𝐵 ) Fn ℝ ) |
30 |
25 11 29
|
mp2an |
⊢ ( sin ↾ 𝐵 ) Fn ℝ |
31 |
|
id |
⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → 𝐺 = ( sin ↾ 𝐵 ) ) |
32 |
3
|
a1i |
⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → 𝐵 = ℝ ) |
33 |
31 32
|
fneq12d |
⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → ( 𝐺 Fn 𝐵 ↔ ( sin ↾ 𝐵 ) Fn ℝ ) ) |
34 |
5 33
|
ax-mp |
⊢ ( 𝐺 Fn 𝐵 ↔ ( sin ↾ 𝐵 ) Fn ℝ ) |
35 |
30 34
|
mpbir |
⊢ 𝐺 Fn 𝐵 |
36 |
1
|
fpar |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
37 |
22 35 36
|
mp2an |
⊢ 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) |
38 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V |
39 |
37 38
|
fnmpoi |
⊢ 𝐻 Fn ( 𝐴 × 𝐵 ) |
40 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) |
41 |
|
fvco2 |
⊢ ( ( 𝐻 Fn ( 𝐴 × 𝐵 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
42 |
39 40 41
|
sylancr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
43 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
44 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
45 |
37 43 44
|
fvproj |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) ) |
47 |
|
df-ov |
⊢ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) = ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
48 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑋 ) = ( ( √ ↾ 𝐴 ) ‘ 𝑋 ) |
49 |
|
fvres |
⊢ ( 𝑋 ∈ 𝐴 → ( ( √ ↾ 𝐴 ) ‘ 𝑋 ) = ( √ ‘ 𝑋 ) ) |
50 |
48 49
|
syl5eq |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) = ( √ ‘ 𝑋 ) ) |
51 |
5
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑌 ) = ( ( sin ↾ 𝐵 ) ‘ 𝑌 ) |
52 |
|
fvres |
⊢ ( 𝑌 ∈ 𝐵 → ( ( sin ↾ 𝐵 ) ‘ 𝑌 ) = ( sin ‘ 𝑌 ) ) |
53 |
51 52
|
syl5eq |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝐺 ‘ 𝑌 ) = ( sin ‘ 𝑌 ) ) |
54 |
50 53
|
oveqan12d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
55 |
47 54
|
eqtr3id |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
56 |
42 46 55
|
3eqtrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
57 |
6 56
|
syl5eq |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( + ∘ 𝐻 ) 𝑌 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |