Metamath Proof Explorer


Theorem ex-fv

Description: Example for df-fv . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-fv ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ( 𝐹 ‘ 3 ) = 9 )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ( 𝐹 ‘ 3 ) = ( { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } ‘ 3 ) )
2 2re 2 ∈ ℝ
3 2lt3 2 < 3
4 2 3 ltneii 2 ≠ 3
5 3ex 3 ∈ V
6 9re 9 ∈ ℝ
7 6 elexi 9 ∈ V
8 5 7 fvpr2 ( 2 ≠ 3 → ( { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } ‘ 3 ) = 9 )
9 4 8 ax-mp ( { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } ‘ 3 ) = 9
10 1 9 eqtrdi ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ( 𝐹 ‘ 3 ) = 9 )