| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 0 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 0 ) + 2 ) ) |
| 3 |
2
|
breq2d |
⊢ ( 𝑘 = 0 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 0 ) + 2 ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑛 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 𝑛 ) + 2 ) ) |
| 6 |
5
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 4 ↑ 𝑘 ) = ( 4 ↑ ( 𝑛 + 1 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) |
| 9 |
8
|
breq2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑁 ) ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 𝑁 ) + 2 ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑘 = 𝑁 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 𝑁 ) + 2 ) ) ) |
| 13 |
|
3z |
⊢ 3 ∈ ℤ |
| 14 |
|
iddvds |
⊢ ( 3 ∈ ℤ → 3 ∥ 3 ) |
| 15 |
13 14
|
ax-mp |
⊢ 3 ∥ 3 |
| 16 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 17 |
16
|
numexp0 |
⊢ ( 4 ↑ 0 ) = 1 |
| 18 |
17
|
oveq1i |
⊢ ( ( 4 ↑ 0 ) + 2 ) = ( 1 + 2 ) |
| 19 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
| 20 |
18 19
|
eqtri |
⊢ ( ( 4 ↑ 0 ) + 2 ) = 3 |
| 21 |
15 20
|
breqtrri |
⊢ 3 ∥ ( ( 4 ↑ 0 ) + 2 ) |
| 22 |
13
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∈ ℤ ) |
| 23 |
16
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 4 ∈ ℕ0 ) |
| 24 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 𝑛 ∈ ℕ0 ) |
| 25 |
23 24
|
nn0expcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℕ0 ) |
| 26 |
25
|
nn0zd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 27 |
|
2z |
⊢ 2 ∈ ℤ |
| 28 |
27
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 2 ∈ ℤ ) |
| 29 |
26 28
|
zaddcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ 𝑛 ) + 2 ) ∈ ℤ ) |
| 30 |
|
4z |
⊢ 4 ∈ ℤ |
| 31 |
30
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 4 ∈ ℤ ) |
| 32 |
29 31
|
zmulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) ∈ ℤ ) |
| 33 |
22 28
|
zmulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 3 · 2 ) ∈ ℤ ) |
| 34 |
16
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 4 ∈ ℕ0 ) |
| 35 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
| 36 |
34 35
|
nn0expcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℕ0 ) |
| 37 |
36
|
nn0zd |
⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 39 |
38 28
|
zaddcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ 𝑛 ) + 2 ) ∈ ℤ ) |
| 40 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) |
| 41 |
22 39 31 40
|
dvdsmultr1d |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) ) |
| 42 |
|
dvdsmul1 |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → 3 ∥ ( 3 · 2 ) ) |
| 43 |
13 27 42
|
mp2an |
⊢ 3 ∥ ( 3 · 2 ) |
| 44 |
43
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( 3 · 2 ) ) |
| 45 |
22 32 33 41 44
|
dvds2subd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 46 |
36
|
nn0cnd |
⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℂ ) |
| 47 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℂ ) |
| 48 |
|
4cn |
⊢ 4 ∈ ℂ |
| 49 |
48
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 4 ∈ ℂ ) |
| 50 |
46 47 49
|
adddird |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 2 · 3 ) ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) ) |
| 52 |
|
3cn |
⊢ 3 ∈ ℂ |
| 53 |
|
2cn |
⊢ 2 ∈ ℂ |
| 54 |
52 53
|
mulcomi |
⊢ ( 3 · 2 ) = ( 2 · 3 ) |
| 55 |
54
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( 3 · 2 ) = ( 2 · 3 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 2 · 3 ) ) ) |
| 57 |
49 35
|
expp1d |
⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ ( 𝑛 + 1 ) ) = ( ( 4 ↑ 𝑛 ) · 4 ) ) |
| 58 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 59 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 60 |
52 58 59
|
addcomli |
⊢ ( 1 + 3 ) = 4 |
| 61 |
60
|
eqcomi |
⊢ 4 = ( 1 + 3 ) |
| 62 |
58 52 61
|
mvrraddi |
⊢ ( 4 − 3 ) = 1 |
| 63 |
62
|
oveq2i |
⊢ ( 2 · ( 4 − 3 ) ) = ( 2 · 1 ) |
| 64 |
53 48 52
|
subdii |
⊢ ( 2 · ( 4 − 3 ) ) = ( ( 2 · 4 ) − ( 2 · 3 ) ) |
| 65 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 66 |
63 64 65
|
3eqtr3ri |
⊢ 2 = ( ( 2 · 4 ) − ( 2 · 3 ) ) |
| 67 |
66
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 = ( ( 2 · 4 ) − ( 2 · 3 ) ) ) |
| 68 |
57 67
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 2 · 4 ) − ( 2 · 3 ) ) ) ) |
| 69 |
46 49
|
mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ 𝑛 ) · 4 ) ∈ ℂ ) |
| 70 |
47 49
|
mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 4 ) ∈ ℂ ) |
| 71 |
52
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 3 ∈ ℂ ) |
| 72 |
47 71
|
mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 3 ) ∈ ℂ ) |
| 73 |
69 70 72
|
addsubassd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 2 · 4 ) − ( 2 · 3 ) ) ) ) |
| 74 |
68 73
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) ) |
| 75 |
51 56 74
|
3eqtr4rd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 77 |
45 76
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) |
| 78 |
77
|
ex |
⊢ ( 𝑛 ∈ ℕ0 → ( 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) ) |
| 79 |
3 6 9 12 21 78
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → 3 ∥ ( ( 4 ↑ 𝑁 ) + 2 ) ) |