| Step |
Hyp |
Ref |
Expression |
| 1 |
|
6nn |
⊢ 6 ∈ ℕ |
| 2 |
|
9nn |
⊢ 9 ∈ ℕ |
| 3 |
1 2
|
nnmulcli |
⊢ ( 6 · 9 ) ∈ ℕ |
| 4 |
3
|
nncni |
⊢ ( 6 · 9 ) ∈ ℂ |
| 5 |
1
|
nnzi |
⊢ 6 ∈ ℤ |
| 6 |
2
|
nnzi |
⊢ 9 ∈ ℤ |
| 7 |
5 6
|
pm3.2i |
⊢ ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) |
| 8 |
|
lcmcl |
⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( 6 lcm 9 ) ∈ ℕ0 ) |
| 9 |
8
|
nn0cnd |
⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( 6 lcm 9 ) ∈ ℂ ) |
| 10 |
7 9
|
ax-mp |
⊢ ( 6 lcm 9 ) ∈ ℂ |
| 11 |
|
neggcd |
⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( - 6 gcd 9 ) = ( 6 gcd 9 ) ) |
| 12 |
7 11
|
ax-mp |
⊢ ( - 6 gcd 9 ) = ( 6 gcd 9 ) |
| 13 |
12
|
eqcomi |
⊢ ( 6 gcd 9 ) = ( - 6 gcd 9 ) |
| 14 |
|
ex-gcd |
⊢ ( - 6 gcd 9 ) = 3 |
| 15 |
13 14
|
eqtri |
⊢ ( 6 gcd 9 ) = 3 |
| 16 |
|
3cn |
⊢ 3 ∈ ℂ |
| 17 |
15 16
|
eqeltri |
⊢ ( 6 gcd 9 ) ∈ ℂ |
| 18 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 19 |
15 18
|
eqnetri |
⊢ ( 6 gcd 9 ) ≠ 0 |
| 20 |
17 19
|
pm3.2i |
⊢ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) |
| 21 |
1 2
|
pm3.2i |
⊢ ( 6 ∈ ℕ ∧ 9 ∈ ℕ ) |
| 22 |
|
lcmgcdnn |
⊢ ( ( 6 ∈ ℕ ∧ 9 ∈ ℕ ) → ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) = ( 6 · 9 ) ) |
| 23 |
21 22
|
mp1i |
⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) = ( 6 · 9 ) ) |
| 24 |
23
|
eqcomd |
⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( 6 · 9 ) = ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) ) |
| 25 |
|
divmul3 |
⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ↔ ( 6 · 9 ) = ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) ) ) |
| 26 |
24 25
|
mpbird |
⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ) |
| 27 |
26
|
eqcomd |
⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( 6 lcm 9 ) = ( ( 6 · 9 ) / ( 6 gcd 9 ) ) ) |
| 28 |
4 10 20 27
|
mp3an |
⊢ ( 6 lcm 9 ) = ( ( 6 · 9 ) / ( 6 gcd 9 ) ) |
| 29 |
15
|
oveq2i |
⊢ ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( ( 6 · 9 ) / 3 ) |
| 30 |
|
6cn |
⊢ 6 ∈ ℂ |
| 31 |
|
9cn |
⊢ 9 ∈ ℂ |
| 32 |
30 31 16 18
|
divassi |
⊢ ( ( 6 · 9 ) / 3 ) = ( 6 · ( 9 / 3 ) ) |
| 33 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 34 |
33
|
eqcomi |
⊢ 9 = ( 3 · 3 ) |
| 35 |
34
|
oveq1i |
⊢ ( 9 / 3 ) = ( ( 3 · 3 ) / 3 ) |
| 36 |
16 16 18
|
divcan3i |
⊢ ( ( 3 · 3 ) / 3 ) = 3 |
| 37 |
35 36
|
eqtri |
⊢ ( 9 / 3 ) = 3 |
| 38 |
37
|
oveq2i |
⊢ ( 6 · ( 9 / 3 ) ) = ( 6 · 3 ) |
| 39 |
|
6t3e18 |
⊢ ( 6 · 3 ) = ; 1 8 |
| 40 |
32 38 39
|
3eqtri |
⊢ ( ( 6 · 9 ) / 3 ) = ; 1 8 |
| 41 |
28 29 40
|
3eqtri |
⊢ ( 6 lcm 9 ) = ; 1 8 |