Description: Example for df-mod . (Contributed by AV, 3-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ex-mod | ⊢ ( ( 5 mod 3 ) = 2 ∧ ( - 7 mod 2 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
2 | 1 | eqcomi | ⊢ 5 = ( 3 + 2 ) |
3 | 2 | oveq1i | ⊢ ( 5 mod 3 ) = ( ( 3 + 2 ) mod 3 ) |
4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
5 | 3nn | ⊢ 3 ∈ ℕ | |
6 | 2lt3 | ⊢ 2 < 3 | |
7 | addmodid | ⊢ ( ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) → ( ( 3 + 2 ) mod 3 ) = 2 ) | |
8 | 4 5 6 7 | mp3an | ⊢ ( ( 3 + 2 ) mod 3 ) = 2 |
9 | 3 8 | eqtri | ⊢ ( 5 mod 3 ) = 2 |
10 | 2re | ⊢ 2 ∈ ℝ | |
11 | 2lt7 | ⊢ 2 < 7 | |
12 | 10 11 | ltneii | ⊢ 2 ≠ 7 |
13 | 2nn | ⊢ 2 ∈ ℕ | |
14 | 1lt2 | ⊢ 1 < 2 | |
15 | eluz2b2 | ⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℕ ∧ 1 < 2 ) ) | |
16 | 13 14 15 | mpbir2an | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
17 | 7prm | ⊢ 7 ∈ ℙ | |
18 | dvdsprm | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 7 ∈ ℙ ) → ( 2 ∥ 7 ↔ 2 = 7 ) ) | |
19 | 16 17 18 | mp2an | ⊢ ( 2 ∥ 7 ↔ 2 = 7 ) |
20 | 12 19 | nemtbir | ⊢ ¬ 2 ∥ 7 |
21 | 2z | ⊢ 2 ∈ ℤ | |
22 | 7nn | ⊢ 7 ∈ ℕ | |
23 | 22 | nnzi | ⊢ 7 ∈ ℤ |
24 | dvdsnegb | ⊢ ( ( 2 ∈ ℤ ∧ 7 ∈ ℤ ) → ( 2 ∥ 7 ↔ 2 ∥ - 7 ) ) | |
25 | 21 23 24 | mp2an | ⊢ ( 2 ∥ 7 ↔ 2 ∥ - 7 ) |
26 | 20 25 | mtbi | ⊢ ¬ 2 ∥ - 7 |
27 | znegcl | ⊢ ( 7 ∈ ℤ → - 7 ∈ ℤ ) | |
28 | mod2eq1n2dvds | ⊢ ( - 7 ∈ ℤ → ( ( - 7 mod 2 ) = 1 ↔ ¬ 2 ∥ - 7 ) ) | |
29 | 23 27 28 | mp2b | ⊢ ( ( - 7 mod 2 ) = 1 ↔ ¬ 2 ∥ - 7 ) |
30 | 26 29 | mpbir | ⊢ ( - 7 mod 2 ) = 1 |
31 | 9 30 | pm3.2i | ⊢ ( ( 5 mod 3 ) = 2 ∧ ( - 7 mod 2 ) = 1 ) |