Metamath Proof Explorer


Theorem ex-natded9.20-2

Description: A more efficient proof of Theorem 9.20 of Clemente p. 45. Compare with ex-natded9.20 . (Contributed by David A. Wheeler, 19-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ex-natded9.20.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
Assertion ex-natded9.20-2 ( 𝜑 → ( ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 ex-natded9.20.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
2 1 simpld ( 𝜑𝜓 )
3 2 anim1i ( ( 𝜑𝜒 ) → ( 𝜓𝜒 ) )
4 3 orcd ( ( 𝜑𝜒 ) → ( ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) ) )
5 2 anim1i ( ( 𝜑𝜃 ) → ( 𝜓𝜃 ) )
6 5 olcd ( ( 𝜑𝜃 ) → ( ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) ) )
7 1 simprd ( 𝜑 → ( 𝜒𝜃 ) )
8 4 6 7 mpjaodan ( 𝜑 → ( ( 𝜓𝜒 ) ∨ ( 𝜓𝜃 ) ) )