Metamath Proof Explorer
Description: Example for df-po . Example by David A. Wheeler. (Contributed by Mario
Carneiro, 18-Jun-2015)
|
|
Ref |
Expression |
|
Assertion |
ex-po |
⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltso |
⊢ < Or ℝ |
| 2 |
|
sopo |
⊢ ( < Or ℝ → < Po ℝ ) |
| 3 |
1 2
|
ax-mp |
⊢ < Po ℝ |
| 4 |
|
0le0 |
⊢ 0 ≤ 0 |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
poirr |
⊢ ( ( ≤ Po ℝ ∧ 0 ∈ ℝ ) → ¬ 0 ≤ 0 ) |
| 7 |
5 6
|
mpan2 |
⊢ ( ≤ Po ℝ → ¬ 0 ≤ 0 ) |
| 8 |
4 7
|
mt2 |
⊢ ¬ ≤ Po ℝ |
| 9 |
3 8
|
pm3.2i |
⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ ) |