Description: Example for df-pr . (Contributed by Mario Carneiro, 7-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ex-pr | ⊢ ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 ↑ 2 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | ⊢ ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 = 1 ∨ 𝐴 = - 1 ) ) | |
2 | oveq1 | ⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ) | |
3 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
4 | 2 3 | eqtrdi | ⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 1 ) |
5 | oveq1 | ⊢ ( 𝐴 = - 1 → ( 𝐴 ↑ 2 ) = ( - 1 ↑ 2 ) ) | |
6 | neg1sqe1 | ⊢ ( - 1 ↑ 2 ) = 1 | |
7 | 5 6 | eqtrdi | ⊢ ( 𝐴 = - 1 → ( 𝐴 ↑ 2 ) = 1 ) |
8 | 4 7 | jaoi | ⊢ ( ( 𝐴 = 1 ∨ 𝐴 = - 1 ) → ( 𝐴 ↑ 2 ) = 1 ) |
9 | 1 8 | syl | ⊢ ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 ↑ 2 ) = 1 ) |