Metamath Proof Explorer


Theorem ex-pr

Description: Example for df-pr . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-pr ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 ↑ 2 ) = 1 )

Proof

Step Hyp Ref Expression
1 elpri ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 = 1 ∨ 𝐴 = - 1 ) )
2 oveq1 ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) )
3 sq1 ( 1 ↑ 2 ) = 1
4 2 3 eqtrdi ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 1 )
5 oveq1 ( 𝐴 = - 1 → ( 𝐴 ↑ 2 ) = ( - 1 ↑ 2 ) )
6 neg1sqe1 ( - 1 ↑ 2 ) = 1
7 5 6 eqtrdi ( 𝐴 = - 1 → ( 𝐴 ↑ 2 ) = 1 )
8 4 7 jaoi ( ( 𝐴 = 1 ∨ 𝐴 = - 1 ) → ( 𝐴 ↑ 2 ) = 1 )
9 1 8 syl ( 𝐴 ∈ { 1 , - 1 } → ( 𝐴 ↑ 2 ) = 1 )