| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 2 |  | prmonn2 | ⊢ ( ; 1 0  ∈  ℕ  →  ( #p ‘ ; 1 0 )  =  if ( ; 1 0  ∈  ℙ ,  ( ( #p ‘ ( ; 1 0  −  1 ) )  ·  ; 1 0 ) ,  ( #p ‘ ( ; 1 0  −  1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ ; 1 0 )  =  if ( ; 1 0  ∈  ℙ ,  ( ( #p ‘ ( ; 1 0  −  1 ) )  ·  ; 1 0 ) ,  ( #p ‘ ( ; 1 0  −  1 ) ) ) | 
						
							| 4 |  | 10nprm | ⊢ ¬  ; 1 0  ∈  ℙ | 
						
							| 5 | 4 | iffalsei | ⊢ if ( ; 1 0  ∈  ℙ ,  ( ( #p ‘ ( ; 1 0  −  1 ) )  ·  ; 1 0 ) ,  ( #p ‘ ( ; 1 0  −  1 ) ) )  =  ( #p ‘ ( ; 1 0  −  1 ) ) | 
						
							| 6 | 3 5 | eqtri | ⊢ ( #p ‘ ; 1 0 )  =  ( #p ‘ ( ; 1 0  −  1 ) ) | 
						
							| 7 |  | 10m1e9 | ⊢ ( ; 1 0  −  1 )  =  9 | 
						
							| 8 | 7 | fveq2i | ⊢ ( #p ‘ ( ; 1 0  −  1 ) )  =  ( #p ‘ 9 ) | 
						
							| 9 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 10 |  | prmonn2 | ⊢ ( 9  ∈  ℕ  →  ( #p ‘ 9 )  =  if ( 9  ∈  ℙ ,  ( ( #p ‘ ( 9  −  1 ) )  ·  9 ) ,  ( #p ‘ ( 9  −  1 ) ) ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( #p ‘ 9 )  =  if ( 9  ∈  ℙ ,  ( ( #p ‘ ( 9  −  1 ) )  ·  9 ) ,  ( #p ‘ ( 9  −  1 ) ) ) | 
						
							| 12 |  | 9nprm | ⊢ ¬  9  ∈  ℙ | 
						
							| 13 | 12 | iffalsei | ⊢ if ( 9  ∈  ℙ ,  ( ( #p ‘ ( 9  −  1 ) )  ·  9 ) ,  ( #p ‘ ( 9  −  1 ) ) )  =  ( #p ‘ ( 9  −  1 ) ) | 
						
							| 14 | 11 13 | eqtri | ⊢ ( #p ‘ 9 )  =  ( #p ‘ ( 9  −  1 ) ) | 
						
							| 15 |  | 9m1e8 | ⊢ ( 9  −  1 )  =  8 | 
						
							| 16 | 15 | fveq2i | ⊢ ( #p ‘ ( 9  −  1 ) )  =  ( #p ‘ 8 ) | 
						
							| 17 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 18 |  | prmonn2 | ⊢ ( 8  ∈  ℕ  →  ( #p ‘ 8 )  =  if ( 8  ∈  ℙ ,  ( ( #p ‘ ( 8  −  1 ) )  ·  8 ) ,  ( #p ‘ ( 8  −  1 ) ) ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( #p ‘ 8 )  =  if ( 8  ∈  ℙ ,  ( ( #p ‘ ( 8  −  1 ) )  ·  8 ) ,  ( #p ‘ ( 8  −  1 ) ) ) | 
						
							| 20 |  | 8nprm | ⊢ ¬  8  ∈  ℙ | 
						
							| 21 | 20 | iffalsei | ⊢ if ( 8  ∈  ℙ ,  ( ( #p ‘ ( 8  −  1 ) )  ·  8 ) ,  ( #p ‘ ( 8  −  1 ) ) )  =  ( #p ‘ ( 8  −  1 ) ) | 
						
							| 22 | 19 21 | eqtri | ⊢ ( #p ‘ 8 )  =  ( #p ‘ ( 8  −  1 ) ) | 
						
							| 23 |  | 8m1e7 | ⊢ ( 8  −  1 )  =  7 | 
						
							| 24 | 23 | fveq2i | ⊢ ( #p ‘ ( 8  −  1 ) )  =  ( #p ‘ 7 ) | 
						
							| 25 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 26 |  | prmonn2 | ⊢ ( 7  ∈  ℕ  →  ( #p ‘ 7 )  =  if ( 7  ∈  ℙ ,  ( ( #p ‘ ( 7  −  1 ) )  ·  7 ) ,  ( #p ‘ ( 7  −  1 ) ) ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ( #p ‘ 7 )  =  if ( 7  ∈  ℙ ,  ( ( #p ‘ ( 7  −  1 ) )  ·  7 ) ,  ( #p ‘ ( 7  −  1 ) ) ) | 
						
							| 28 |  | 7prm | ⊢ 7  ∈  ℙ | 
						
							| 29 | 28 | iftruei | ⊢ if ( 7  ∈  ℙ ,  ( ( #p ‘ ( 7  −  1 ) )  ·  7 ) ,  ( #p ‘ ( 7  −  1 ) ) )  =  ( ( #p ‘ ( 7  −  1 ) )  ·  7 ) | 
						
							| 30 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 31 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 32 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 33 |  | 7m1e6 | ⊢ ( 7  −  1 )  =  6 | 
						
							| 34 | 33 | fveq2i | ⊢ ( #p ‘ ( 7  −  1 ) )  =  ( #p ‘ 6 ) | 
						
							| 35 |  | prmo6 | ⊢ ( #p ‘ 6 )  =  ; 3 0 | 
						
							| 36 | 34 35 | eqtri | ⊢ ( #p ‘ ( 7  −  1 ) )  =  ; 3 0 | 
						
							| 37 |  | 7cn | ⊢ 7  ∈  ℂ | 
						
							| 38 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 39 |  | 7t3e21 | ⊢ ( 7  ·  3 )  =  ; 2 1 | 
						
							| 40 | 37 38 39 | mulcomli | ⊢ ( 3  ·  7 )  =  ; 2 1 | 
						
							| 41 | 37 | mul02i | ⊢ ( 0  ·  7 )  =  0 | 
						
							| 42 | 30 31 32 36 40 41 | decmul1 | ⊢ ( ( #p ‘ ( 7  −  1 ) )  ·  7 )  =  ; ; 2 1 0 | 
						
							| 43 | 27 29 42 | 3eqtri | ⊢ ( #p ‘ 7 )  =  ; ; 2 1 0 | 
						
							| 44 | 22 24 43 | 3eqtri | ⊢ ( #p ‘ 8 )  =  ; ; 2 1 0 | 
						
							| 45 | 14 16 44 | 3eqtri | ⊢ ( #p ‘ 9 )  =  ; ; 2 1 0 | 
						
							| 46 | 6 8 45 | 3eqtri | ⊢ ( #p ‘ ; 1 0 )  =  ; ; 2 1 0 |