Metamath Proof Explorer


Theorem ex-pss

Description: Example for df-pss . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-pss { 1 , 2 } ⊊ { 1 , 2 , 3 }

Proof

Step Hyp Ref Expression
1 ex-ss { 1 , 2 } ⊆ { 1 , 2 , 3 }
2 3ex 3 ∈ V
3 2 tpid3 3 ∈ { 1 , 2 , 3 }
4 1re 1 ∈ ℝ
5 1lt3 1 < 3
6 4 5 gtneii 3 ≠ 1
7 2re 2 ∈ ℝ
8 2lt3 2 < 3
9 7 8 gtneii 3 ≠ 2
10 6 9 nelpri ¬ 3 ∈ { 1 , 2 }
11 nelne1 ( ( 3 ∈ { 1 , 2 , 3 } ∧ ¬ 3 ∈ { 1 , 2 } ) → { 1 , 2 , 3 } ≠ { 1 , 2 } )
12 3 10 11 mp2an { 1 , 2 , 3 } ≠ { 1 , 2 }
13 12 necomi { 1 , 2 } ≠ { 1 , 2 , 3 }
14 df-pss ( { 1 , 2 } ⊊ { 1 , 2 , 3 } ↔ ( { 1 , 2 } ⊆ { 1 , 2 , 3 } ∧ { 1 , 2 } ≠ { 1 , 2 , 3 } ) )
15 1 13 14 mpbir2an { 1 , 2 } ⊊ { 1 , 2 , 3 }