Metamath Proof Explorer


Theorem ex-rn

Description: Example for df-rn . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-rn ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ran 𝐹 = { 6 , 9 } )

Proof

Step Hyp Ref Expression
1 rneq ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ran 𝐹 = ran { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } )
2 df-pr { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } = ( { ⟨ 2 , 6 ⟩ } ∪ { ⟨ 3 , 9 ⟩ } )
3 2 rneqi ran { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } = ran ( { ⟨ 2 , 6 ⟩ } ∪ { ⟨ 3 , 9 ⟩ } )
4 rnun ran ( { ⟨ 2 , 6 ⟩ } ∪ { ⟨ 3 , 9 ⟩ } ) = ( ran { ⟨ 2 , 6 ⟩ } ∪ ran { ⟨ 3 , 9 ⟩ } )
5 2nn 2 ∈ ℕ
6 5 elexi 2 ∈ V
7 6 rnsnop ran { ⟨ 2 , 6 ⟩ } = { 6 }
8 3nn 3 ∈ ℕ
9 8 elexi 3 ∈ V
10 9 rnsnop ran { ⟨ 3 , 9 ⟩ } = { 9 }
11 7 10 uneq12i ( ran { ⟨ 2 , 6 ⟩ } ∪ ran { ⟨ 3 , 9 ⟩ } ) = ( { 6 } ∪ { 9 } )
12 df-pr { 6 , 9 } = ( { 6 } ∪ { 9 } )
13 11 12 eqtr4i ( ran { ⟨ 2 , 6 ⟩ } ∪ ran { ⟨ 3 , 9 ⟩ } ) = { 6 , 9 }
14 3 4 13 3eqtri ran { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } = { 6 , 9 }
15 1 14 eqtrdi ( 𝐹 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ran 𝐹 = { 6 , 9 } )