Metamath Proof Explorer


Theorem ex-sategoel

Description: Instance of sategoelfv for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypotheses sategoelfvb.s 𝐸 = ( 𝑀 Sat ( 𝐴𝑔 𝐵 ) )
ex-sategoelel.s 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) )
Assertion ex-sategoel ( ( ( 𝑀 ∈ WUni ∧ 𝑍𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) ) → ( 𝑆𝐴 ) ∈ ( 𝑆𝐵 ) )

Proof

Step Hyp Ref Expression
1 sategoelfvb.s 𝐸 = ( 𝑀 Sat ( 𝐴𝑔 𝐵 ) )
2 ex-sategoelel.s 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) )
3 simpll ( ( ( 𝑀 ∈ WUni ∧ 𝑍𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) ) → 𝑀 ∈ WUni )
4 3simpa ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) )
5 4 adantl ( ( ( 𝑀 ∈ WUni ∧ 𝑍𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) )
6 1 2 ex-sategoelel ( ( ( 𝑀 ∈ WUni ∧ 𝑍𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) ) → 𝑆𝐸 )
7 1 sategoelfv ( ( 𝑀 ∈ WUni ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑆𝐸 ) → ( 𝑆𝐴 ) ∈ ( 𝑆𝐵 ) )
8 3 5 6 7 syl3anc ( ( ( 𝑀 ∈ WUni ∧ 𝑍𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵 ) ) → ( 𝑆𝐴 ) ∈ ( 𝑆𝐵 ) )