Step |
Hyp |
Ref |
Expression |
1 |
|
sategoelfvb.s |
⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) |
2 |
|
ex-sategoelel.s |
⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) |
3 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑀 ∈ WUni ) |
4 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) |
6 |
1 2
|
ex-sategoelel |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ 𝐸 ) |
7 |
1
|
sategoelfv |
⊢ ( ( 𝑀 ∈ WUni ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |
8 |
3 5 6 7
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |