Step |
Hyp |
Ref |
Expression |
1 |
|
sategoelfvb.s |
⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) |
2 |
|
ex-sategoelel.s |
⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) |
3 |
|
simpr |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑍 ∈ 𝑀 ) |
4 |
|
simpl |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑀 ∈ WUni ) |
5 |
4 3
|
wunpw |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝒫 𝑍 ∈ 𝑀 ) |
6 |
4
|
wun0 |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → ∅ ∈ 𝑀 ) |
7 |
5 6
|
ifcld |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ 𝑀 ) |
8 |
3 7
|
ifcld |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 ∈ ω ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
11 |
10 2
|
fmptd |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 : ω ⟶ 𝑀 ) |
12 |
4
|
adantr |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑀 ∈ WUni ) |
13 |
|
omex |
⊢ ω ∈ V |
14 |
13
|
a1i |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ω ∈ V ) |
15 |
12 14
|
elmapd |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ∈ ( 𝑀 ↑m ω ) ↔ 𝑆 : ω ⟶ 𝑀 ) ) |
16 |
11 15
|
mpbird |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ ( 𝑀 ↑m ω ) ) |
17 |
|
pwidg |
⊢ ( 𝑍 ∈ 𝑀 → 𝑍 ∈ 𝒫 𝑍 ) |
18 |
17
|
adantl |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑍 ∈ 𝒫 𝑍 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑍 ∈ 𝒫 𝑍 ) |
20 |
2
|
a1i |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) ) |
21 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = 𝑍 ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = 𝑍 ) |
23 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ ω ) |
24 |
3
|
adantr |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑍 ∈ 𝑀 ) |
25 |
20 22 23 24
|
fvmptd |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) = 𝑍 ) |
26 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
27 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
28 |
27
|
ifbid |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
29 |
26 28
|
ifbieq2d |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) |
30 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
31 |
|
ifnefalse |
⊢ ( 𝐵 ≠ 𝐴 → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
32 |
30 31
|
sylbi |
⊢ ( 𝐴 ≠ 𝐵 → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
35 |
29 34
|
sylan9eqr |
⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
36 |
|
simpr2 |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ ω ) |
37 |
|
pwexg |
⊢ ( 𝑍 ∈ 𝑀 → 𝒫 𝑍 ∈ V ) |
38 |
37
|
adantl |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝒫 𝑍 ∈ V ) |
39 |
|
0ex |
⊢ ∅ ∈ V |
40 |
39
|
a1i |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → ∅ ∈ V ) |
41 |
38 40
|
ifcld |
⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ V ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ V ) |
43 |
20 35 36 42
|
fvmptd |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
44 |
|
eqid |
⊢ 𝐵 = 𝐵 |
45 |
44
|
iftruei |
⊢ if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) = 𝒫 𝑍 |
46 |
43 45
|
eqtrdi |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) = 𝒫 𝑍 ) |
47 |
19 25 46
|
3eltr4d |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |
48 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) |
49 |
1
|
sategoelfvb |
⊢ ( ( 𝑀 ∈ WUni ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
50 |
4 48 49
|
syl2an |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
51 |
16 47 50
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ 𝐸 ) |