Step |
Hyp |
Ref |
Expression |
1 |
|
ex-sategoelel12.s |
⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 1o , 2o ) ) |
2 |
|
1oex |
⊢ 1o ∈ V |
3 |
2
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
4 |
|
2oex |
⊢ 2o ∈ V |
5 |
4
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
6 |
3 5
|
ifcli |
⊢ if ( 𝑥 = 2o , 1o , 2o ) ∈ { 1o , 2o } |
7 |
6
|
a1i |
⊢ ( 𝑥 ∈ ω → if ( 𝑥 = 2o , 1o , 2o ) ∈ { 1o , 2o } ) |
8 |
1 7
|
fmpti |
⊢ 𝑆 : ω ⟶ { 1o , 2o } |
9 |
|
prex |
⊢ { 1o , 2o } ∈ V |
10 |
|
omex |
⊢ ω ∈ V |
11 |
9 10
|
elmap |
⊢ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ↔ 𝑆 : ω ⟶ { 1o , 2o } ) |
12 |
8 11
|
mpbir |
⊢ 𝑆 ∈ ( { 1o , 2o } ↑m ω ) |
13 |
2
|
sucid |
⊢ 1o ∈ suc 1o |
14 |
|
df-2o |
⊢ 2o = suc 1o |
15 |
13 14
|
eleqtrri |
⊢ 1o ∈ 2o |
16 |
|
2onn |
⊢ 2o ∈ ω |
17 |
|
1onn |
⊢ 1o ∈ ω |
18 |
|
iftrue |
⊢ ( 𝑥 = 2o → if ( 𝑥 = 2o , 1o , 2o ) = 1o ) |
19 |
18 1
|
fvmptg |
⊢ ( ( 2o ∈ ω ∧ 1o ∈ ω ) → ( 𝑆 ‘ 2o ) = 1o ) |
20 |
16 17 19
|
mp2an |
⊢ ( 𝑆 ‘ 2o ) = 1o |
21 |
|
1one2o |
⊢ 1o ≠ 2o |
22 |
21
|
neii |
⊢ ¬ 1o = 2o |
23 |
|
eqeq1 |
⊢ ( 𝑥 = 1o → ( 𝑥 = 2o ↔ 1o = 2o ) ) |
24 |
22 23
|
mtbiri |
⊢ ( 𝑥 = 1o → ¬ 𝑥 = 2o ) |
25 |
24
|
iffalsed |
⊢ ( 𝑥 = 1o → if ( 𝑥 = 2o , 1o , 2o ) = 2o ) |
26 |
25 1
|
fvmptg |
⊢ ( ( 1o ∈ ω ∧ 2o ∈ ω ) → ( 𝑆 ‘ 1o ) = 2o ) |
27 |
17 16 26
|
mp2an |
⊢ ( 𝑆 ‘ 1o ) = 2o |
28 |
15 20 27
|
3eltr4i |
⊢ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) |
29 |
12 28
|
pm3.2i |
⊢ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) |
30 |
16 17
|
pm3.2i |
⊢ ( 2o ∈ ω ∧ 1o ∈ ω ) |
31 |
|
eqid |
⊢ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) = ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) |
32 |
31
|
sategoelfvb |
⊢ ( ( { 1o , 2o } ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) → ( 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
33 |
9 30 32
|
mp2an |
⊢ ( 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) |
34 |
29 33
|
mpbir |
⊢ 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) |