Step |
Hyp |
Ref |
Expression |
1 |
|
ex-sategoelelomsuc.s |
⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ) |
2 |
|
id |
⊢ ( 𝑍 ∈ ω → 𝑍 ∈ ω ) |
3 |
|
peano2 |
⊢ ( 𝑍 ∈ ω → suc 𝑍 ∈ ω ) |
4 |
2 3
|
ifcld |
⊢ ( 𝑍 ∈ ω → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ∈ ω ) |
5 |
4
|
adantr |
⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 ∈ ω ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ∈ ω ) |
6 |
5 1
|
fmptd |
⊢ ( 𝑍 ∈ ω → 𝑆 : ω ⟶ ω ) |
7 |
|
omex |
⊢ ω ∈ V |
8 |
7
|
a1i |
⊢ ( 𝑍 ∈ ω → ω ∈ V ) |
9 |
8 8
|
elmapd |
⊢ ( 𝑍 ∈ ω → ( 𝑆 ∈ ( ω ↑m ω ) ↔ 𝑆 : ω ⟶ ω ) ) |
10 |
6 9
|
mpbird |
⊢ ( 𝑍 ∈ ω → 𝑆 ∈ ( ω ↑m ω ) ) |
11 |
|
sucidg |
⊢ ( 𝑍 ∈ ω → 𝑍 ∈ suc 𝑍 ) |
12 |
1
|
a1i |
⊢ ( 𝑍 ∈ ω → 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ) ) |
13 |
|
iftrue |
⊢ ( 𝑥 = 2o → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = 𝑍 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 = 2o ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = 𝑍 ) |
15 |
|
2onn |
⊢ 2o ∈ ω |
16 |
15
|
a1i |
⊢ ( 𝑍 ∈ ω → 2o ∈ ω ) |
17 |
12 14 16 2
|
fvmptd |
⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 2o ) = 𝑍 ) |
18 |
|
1one2o |
⊢ 1o ≠ 2o |
19 |
18
|
neii |
⊢ ¬ 1o = 2o |
20 |
|
eqeq1 |
⊢ ( 𝑥 = 1o → ( 𝑥 = 2o ↔ 1o = 2o ) ) |
21 |
19 20
|
mtbiri |
⊢ ( 𝑥 = 1o → ¬ 𝑥 = 2o ) |
22 |
21
|
iffalsed |
⊢ ( 𝑥 = 1o → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = suc 𝑍 ) |
23 |
22
|
adantl |
⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 = 1o ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = suc 𝑍 ) |
24 |
|
1onn |
⊢ 1o ∈ ω |
25 |
24
|
a1i |
⊢ ( 𝑍 ∈ ω → 1o ∈ ω ) |
26 |
12 23 25 3
|
fvmptd |
⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 1o ) = suc 𝑍 ) |
27 |
11 17 26
|
3eltr4d |
⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) |
28 |
15 24
|
pm3.2i |
⊢ ( 2o ∈ ω ∧ 1o ∈ ω ) |
29 |
7 28
|
pm3.2i |
⊢ ( ω ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) |
30 |
|
eqid |
⊢ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) = ( ω Sat∈ ( 2o ∈𝑔 1o ) ) |
31 |
30
|
sategoelfvb |
⊢ ( ( ω ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) → ( 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( ω ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
32 |
29 31
|
mp1i |
⊢ ( 𝑍 ∈ ω → ( 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( ω ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
33 |
10 27 32
|
mpbir2and |
⊢ ( 𝑍 ∈ ω → 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ) |