| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ex-sategoelelomsuc.s | ⊢ 𝑆  =  ( 𝑥  ∈  ω  ↦  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑍  ∈  ω  →  𝑍  ∈  ω ) | 
						
							| 3 |  | peano2 | ⊢ ( 𝑍  ∈  ω  →  suc  𝑍  ∈  ω ) | 
						
							| 4 | 2 3 | ifcld | ⊢ ( 𝑍  ∈  ω  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  ∈  ω ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑍  ∈  ω  ∧  𝑥  ∈  ω )  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  ∈  ω ) | 
						
							| 6 | 5 1 | fmptd | ⊢ ( 𝑍  ∈  ω  →  𝑆 : ω ⟶ ω ) | 
						
							| 7 |  | omex | ⊢ ω  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑍  ∈  ω  →  ω  ∈  V ) | 
						
							| 9 | 8 8 | elmapd | ⊢ ( 𝑍  ∈  ω  →  ( 𝑆  ∈  ( ω  ↑m  ω )  ↔  𝑆 : ω ⟶ ω ) ) | 
						
							| 10 | 6 9 | mpbird | ⊢ ( 𝑍  ∈  ω  →  𝑆  ∈  ( ω  ↑m  ω ) ) | 
						
							| 11 |  | sucidg | ⊢ ( 𝑍  ∈  ω  →  𝑍  ∈  suc  𝑍 ) | 
						
							| 12 | 1 | a1i | ⊢ ( 𝑍  ∈  ω  →  𝑆  =  ( 𝑥  ∈  ω  ↦  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 ) ) ) | 
						
							| 13 |  | iftrue | ⊢ ( 𝑥  =  2o  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  =  𝑍 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑍  ∈  ω  ∧  𝑥  =  2o )  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  =  𝑍 ) | 
						
							| 15 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑍  ∈  ω  →  2o  ∈  ω ) | 
						
							| 17 | 12 14 16 2 | fvmptd | ⊢ ( 𝑍  ∈  ω  →  ( 𝑆 ‘ 2o )  =  𝑍 ) | 
						
							| 18 |  | 1one2o | ⊢ 1o  ≠  2o | 
						
							| 19 | 18 | neii | ⊢ ¬  1o  =  2o | 
						
							| 20 |  | eqeq1 | ⊢ ( 𝑥  =  1o  →  ( 𝑥  =  2o  ↔  1o  =  2o ) ) | 
						
							| 21 | 19 20 | mtbiri | ⊢ ( 𝑥  =  1o  →  ¬  𝑥  =  2o ) | 
						
							| 22 | 21 | iffalsed | ⊢ ( 𝑥  =  1o  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  =  suc  𝑍 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑍  ∈  ω  ∧  𝑥  =  1o )  →  if ( 𝑥  =  2o ,  𝑍 ,  suc  𝑍 )  =  suc  𝑍 ) | 
						
							| 24 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑍  ∈  ω  →  1o  ∈  ω ) | 
						
							| 26 | 12 23 25 3 | fvmptd | ⊢ ( 𝑍  ∈  ω  →  ( 𝑆 ‘ 1o )  =  suc  𝑍 ) | 
						
							| 27 | 11 17 26 | 3eltr4d | ⊢ ( 𝑍  ∈  ω  →  ( 𝑆 ‘ 2o )  ∈  ( 𝑆 ‘ 1o ) ) | 
						
							| 28 | 15 24 | pm3.2i | ⊢ ( 2o  ∈  ω  ∧  1o  ∈  ω ) | 
						
							| 29 | 7 28 | pm3.2i | ⊢ ( ω  ∈  V  ∧  ( 2o  ∈  ω  ∧  1o  ∈  ω ) ) | 
						
							| 30 |  | eqid | ⊢ ( ω  Sat∈  ( 2o ∈𝑔 1o ) )  =  ( ω  Sat∈  ( 2o ∈𝑔 1o ) ) | 
						
							| 31 | 30 | sategoelfvb | ⊢ ( ( ω  ∈  V  ∧  ( 2o  ∈  ω  ∧  1o  ∈  ω ) )  →  ( 𝑆  ∈  ( ω  Sat∈  ( 2o ∈𝑔 1o ) )  ↔  ( 𝑆  ∈  ( ω  ↑m  ω )  ∧  ( 𝑆 ‘ 2o )  ∈  ( 𝑆 ‘ 1o ) ) ) ) | 
						
							| 32 | 29 31 | mp1i | ⊢ ( 𝑍  ∈  ω  →  ( 𝑆  ∈  ( ω  Sat∈  ( 2o ∈𝑔 1o ) )  ↔  ( 𝑆  ∈  ( ω  ↑m  ω )  ∧  ( 𝑆 ‘ 2o )  ∈  ( 𝑆 ‘ 1o ) ) ) ) | 
						
							| 33 | 10 27 32 | mpbir2and | ⊢ ( 𝑍  ∈  ω  →  𝑆  ∈  ( ω  Sat∈  ( 2o ∈𝑔 1o ) ) ) |