Metamath Proof Explorer


Theorem ex-uni

Description: Example for df-uni . Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ex-uni { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 }

Proof

Step Hyp Ref Expression
1 prex { 1 , 3 } ∈ V
2 prex { 1 , 8 } ∈ V
3 1 2 unipr { { 1 , 3 } , { 1 , 8 } } = ( { 1 , 3 } ∪ { 1 , 8 } )
4 ex-un ( { 1 , 3 } ∪ { 1 , 8 } ) = { 1 , 3 , 8 }
5 3 4 eqtri { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 }