Metamath Proof Explorer


Theorem exa1

Description: Add an antecedent in an existentially quantified formula. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion exa1 ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( 𝜓𝜑 ) )
2 1 eximi ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜓𝜑 ) )