Metamath Proof Explorer


Theorem exancom

Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion exancom ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 1 exbii ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )