| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atomle.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							atomle.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							atomle.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							atomle.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃 )  →  ¬  𝑄  ≤  𝑋 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								6
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp122 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								1 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑄  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp121 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								1 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								
							 | 
							simp123 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								1 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑅  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑅  ∈  𝐵 )  →  ( 𝑃  ∨  𝑅 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								7 13 16 17
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  ( 𝑃  ∨  𝑅 )  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								14 8 11
							 | 
							3jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  ( 𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑅  ≠  𝑃 )  | 
						
						
							| 22 | 
							
								6 20 21
							 | 
							3jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  ( 𝐾  ∈  HL  ∧  ( 𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ≠  𝑃 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp133 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 24 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							sylc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp131 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑃  ≤  𝑋 )  | 
						
						
							| 27 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑅  ≤  𝑋 )  | 
						
						
							| 28 | 
							
								1 2 3
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  𝐵  ∧  𝑅  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑃  ≤  𝑋  ∧  𝑅  ≤  𝑋 )  ↔  ( 𝑃  ∨  𝑅 )  ≤  𝑋 ) )  | 
						
						
							| 29 | 
							
								7 13 16 19 28
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  ( ( 𝑃  ≤  𝑋  ∧  𝑅  ≤  𝑋 )  ↔  ( 𝑃  ∨  𝑅 )  ≤  𝑋 ) )  | 
						
						
							| 30 | 
							
								26 27 29
							 | 
							mpbi2and | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  ( 𝑃  ∨  𝑅 )  ≤  𝑋 )  | 
						
						
							| 31 | 
							
								1 2 7 10 18 19 25 30
							 | 
							lattrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃  ∧  𝑅  ≤  𝑋 )  →  𝑄  ≤  𝑋 )  | 
						
						
							| 32 | 
							
								31
							 | 
							3expia | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑅  ≤  𝑋  →  𝑄  ≤  𝑋 ) )  | 
						
						
							| 33 | 
							
								5 32
							 | 
							mtod | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑅  ≠  𝑃 )  →  ¬  𝑅  ≤  𝑋 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ex | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≠  𝑃  →  ¬  𝑅  ≤  𝑋 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							necon4ad | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  𝑋  →  𝑅  =  𝑃 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≤  𝑋 )  | 
						
						
							| 37 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑅  =  𝑃  →  ( 𝑅  ≤  𝑋  ↔  𝑃  ≤  𝑋 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl5ibrcom | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  =  𝑃  →  𝑅  ≤  𝑋 ) )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							impbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≤  𝑋  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  𝑋  ↔  𝑅  =  𝑃 ) )  |