Metamath Proof Explorer
Description: Formula-building rule for existential quantifier (deduction form).
(Contributed by Mario Carneiro, 24-Sep-2016)
|
|
Ref |
Expression |
|
Hypotheses |
albid.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
albid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
exbid |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
albid.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
albid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
1
|
nf5ri |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
4 |
3 2
|
exbidh |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |