Metamath Proof Explorer


Theorem exbid

Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses albid.1 𝑥 𝜑
albid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exbid ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 albid.1 𝑥 𝜑
2 albid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 nf5ri ( 𝜑 → ∀ 𝑥 𝜑 )
4 3 2 exbidh ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )