Metamath Proof Explorer
Description: Formula-building rule for existential quantifier (deduction form).
(Contributed by NM, 26-May-1993)
|
|
Ref |
Expression |
|
Hypotheses |
exbidh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
exbidh.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
exbidh |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exbidh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
exbidh.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
2
|
alexbii |
⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |