Metamath Proof Explorer


Theorem exbii

Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994)

Ref Expression
Hypothesis exbii.1 ( 𝜑𝜓 )
Assertion exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 exbii.1 ( 𝜑𝜓 )
2 exbi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) )
3 2 1 mpg ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 )