Metamath Proof Explorer
Description: Inference adding existential quantifier to both sides of an equivalence.
(Contributed by NM, 24-May-1994)
|
|
Ref |
Expression |
|
Hypothesis |
exbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
exbii |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 2 |
|
exbi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) ) |
| 3 |
2 1
|
mpg |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) |