Description: Virtual deduction proof of exbir . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) ->. ( ( ph /\ ps ) -> ( ch <-> th ) ) ). |
2:: | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) ,. ( ph /\ ps ) ->. ( ph /\ ps ) ). |
3:: | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) ,. ( ph /\ ps ) , th ->. th ). |
5:1,2,?: e12 | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) , ( ph /\ ps ) ->. ( ch <-> th ) ). |
6:3,5,?: e32 | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) , ( ph /\ ps ) , th ->. ch ). |
7:6: | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) , ( ph /\ ps ) ->. ( th -> ch ) ). |
8:7: | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) ->. ( ( ph /\ ps ) -> ( th -> ch ) ) ). |
9:8,?: e1a | |- (. ( ( ph /\ ps ) -> ( ch <-> th ) ) ->. ( ph -> ( ps -> ( th -> ch ) ) ) ). |
qed:9: | |- ( ( ( ph /\ ps ) -> ( ch <-> th ) ) -> ( ph -> ( ps -> ( th -> ch ) ) ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | exbirVD | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜒 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) , ( 𝜑 ∧ 𝜓 ) , 𝜃 ▶ 𝜃 ) | |
2 | idn1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) ▶ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) ) | |
3 | idn2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) , ( 𝜑 ∧ 𝜓 ) ▶ ( 𝜑 ∧ 𝜓 ) ) | |
4 | id | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) ) | |
5 | 2 3 4 | e12 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) , ( 𝜑 ∧ 𝜓 ) ▶ ( 𝜒 ↔ 𝜃 ) ) |
6 | biimpr | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( 𝜃 → 𝜒 ) ) | |
7 | 6 | com12 | ⊢ ( 𝜃 → ( ( 𝜒 ↔ 𝜃 ) → 𝜒 ) ) |
8 | 1 5 7 | e32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) , ( 𝜑 ∧ 𝜓 ) , 𝜃 ▶ 𝜒 ) |
9 | 8 | in3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) , ( 𝜑 ∧ 𝜓 ) ▶ ( 𝜃 → 𝜒 ) ) |
10 | 9 | in2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) ▶ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜃 → 𝜒 ) ) ) |
11 | pm3.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜃 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜒 ) ) ) ) | |
12 | 10 11 | e1a | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) ▶ ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜒 ) ) ) ) |
13 | 12 | in1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜒 ) ) ) ) |