Description: Weak version of excomim . Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 23-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | excomimw.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | excomimw | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomimw.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑥 = 𝑧 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 | 2 | alcomimw | ⊢ ( ∀ 𝑦 ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
| 4 | 3 | con3i | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ¬ ∀ 𝑦 ∀ 𝑥 ¬ 𝜑 ) |
| 5 | 2exnaln | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
| 6 | 2exnaln | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑥 ¬ 𝜑 ) | |
| 7 | 4 5 6 | 3imtr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜑 ) |