Metamath Proof Explorer
Description: Weak version of excom and biconditional form of excomimw . Uses
only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026)
|
|
Ref |
Expression |
|
Hypotheses |
excomw.1 |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
excomw.2 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) |
|
Assertion |
excomw |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
excomw.1 |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
excomw.2 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
1
|
excomimw |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜑 ) |
| 4 |
2
|
excomimw |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 5 |
3 4
|
impbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) |