Metamath Proof Explorer


Theorem excomw

Description: Weak version of excom and biconditional form of excomimw . Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypotheses excomw.1 ( 𝑥 = 𝑤 → ( 𝜑𝜓 ) )
excomw.2 ( 𝑦 = 𝑧 → ( 𝜑𝜒 ) )
Assertion excomw ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 excomw.1 ( 𝑥 = 𝑤 → ( 𝜑𝜓 ) )
2 excomw.2 ( 𝑦 = 𝑧 → ( 𝜑𝜒 ) )
3 1 excomimw ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦𝑥 𝜑 )
4 2 excomimw ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 )
5 3 4 impbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 )