Metamath Proof Explorer
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995)
|
|
Ref |
Expression |
|
Assertion |
exdistr2 |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |
2 |
1
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |