| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exdistrf.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜑 ) |
| 2 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) |
| 3 |
|
19.8a |
⊢ ( 𝜓 → ∃ 𝑦 𝜓 ) |
| 4 |
3
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
| 5 |
4
|
eximi |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑦 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
| 6 |
|
biidd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
| 7 |
6
|
drex1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
| 8 |
5 7
|
imbitrrid |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
| 9 |
|
19.40 |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
| 10 |
1
|
19.9d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 𝜑 → 𝜑 ) ) |
| 11 |
10
|
anim1d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) → ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
| 12 |
|
19.8a |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
| 13 |
9 11 12
|
syl56 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
| 14 |
8 13
|
pm2.61i |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
| 15 |
2 14
|
exlimi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |